
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A2 7 5 024

RAV DTIC
1ELECTE

,S IJANZA,1994L

THESIS B

A CONCURRENT, OBJECT-BASED
IMPLEMENTATION FOR THE TACTICAL LEVEL

OF THE RATIONAL BEHAVIOR MODEL

by

Frederick Perry Boynton Thornton, Jr.

September 1993

Thesis Advisor: Dr. Se-Hung Kwak

Approved for public release; distribution is unlimited.

94-02776
tIllI I lll III IH N II I2 2I

94 1 26 204

Form Approved

REPORT DOCUMENTATION PAGE oMB Npo. 704-018
Punc spoo ing burdnf the t lemuctlon of wdalobto a atated to awerae 1 no pr rmneprwe mmciwo t•re ie w em wie rmstudta aaarhe egeling data mums
galherug send m nt&" the dta reaoded and -ooVIt q and rewvw ft baloleon oef rm~o Send o•avt -wro rding " burdoe 061eet o W any 0"W ' as t•ts

oMhca~eof i mion.e vmgdluln WMeW Ice rUcmgtheOw burdena, I@to Washwto Weaaduaete Sev D,• -- ,a for Waoerteu Operate aned ReOpoet 1215 Jeaoe,o
Dam Wighoeay Sube 1204 Admo VA 02-4302 and to ft ON,=c of Mmnageret sand Budge Papwork Reduawe Polop' (0704-011M). Washoeon DC 20503

1. AGENCY USE ONLY (Leave Blank) REPORT DATE 13. REPORT TYPE AND DATES COVEREDr September 1993 I Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Concurrent, Object-Based Implementation for the Tactical Level of
the Rational Behavior Model(U)

6. AUTHOR(S)

Thornton Jr., Frederick Perry Boynton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORINGi MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING' MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified/Unlimited

13. ABSTRACT l(Mfxmur 20D waros)
The middle, or Tactical, level of the Rational Behavior Model (RBM) is the essential bridge linking

the top and bottom levels of the model together. To insure an autonomous vehicle maintains control and
thus exhibits rational behavior during such time-consuming tasks as search, homing, and route replanning,
the Tactical level must be able to handle concurrency. Until now, this level has been implemented in only
a limited way using an object-oriented language and sequential operations. The objective of this thesis is
to construct an implementation model that represents the concurency inherent in the Tactical level within
the framework of the design model already developed.

The method for building this implementation is to use the Ada task construct for concurrency to
represent the objects of the design model and their communication with each other.

This research creates a Tactical level implementation in Ada for the NPS Autonomous Underwater
Vehicle (AUV) simulator that successfully executes a mission scenario involving transit, search, task, and
return phases and the same mission scenario with route replanning. This work thus provides a foundation
for future development of concurrent implementations of this level of RBM.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Concurrency, Multitasking, Object-Based, Object-Oriented, Rational 142
Behavior Model, Tactical Level, Autonomous Underwater Vehicle 16. PRICE cOPE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 10. CURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescnbed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

A CONCURRENT, OBJECT-BASED IMPLEMENTATION
FOR THE TACTICAL LEVEL

OF THE RATIONAL BEHAVIOR MODEL

by
Frederick Perry Boynton Thornton, Jr.
Captain, United States Marine Corps

BA., Duke University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: -:7.a •'Ae' 7LA C,.-. 1 C].t

Frederick Perry Boynton Thornton, Jr.

Approved By:
Dr. Se-Hunj\Kwc,ý Thesis Advisor

Dr. Robert B. McGhee, Second Reader

Dr. Ted Lewis, Chairman,
Department of Computer Science

ii

ABSTRACT

The middle, or Tactical, level of the Rational Behavior Model (RBM) is the essential

bridge linking the top and bottom levels of the model together. To insure an autonomous

vehicle maintains control and thus exhibits rational behavior during such time-consuming

tasks as search, homing, and route replanning, the Tactical level must be able to handle

concurrency. Until now, this level has been implemented in only a limited way using an

object-oriented language and sequential operations. The objective of this thesis is to

construct an implementation model that represents the concurrency inherent in the Tactical

level within the framework of the design model already developed.

The method for building this implementation is to use the Ada task construct for

concurrency to represent the objects of the design model and their communication with

each other.

This research creates a Tactical level implementation in Ada for the NPS Autonomous

Underwater Vehicle (AUV) simulator that successfully executes a mission scenario

involving transit, search, task, and return phases and the same mission scenario with route

replanning. This work thus provides a foundation for future development of concurrent

implementations of this level of RBM.

D,'fO QOJ AL7TY 1SFECTD B

1A.Vail andior

at/I S~ecta

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND ... 1

B. STATEMENT OF THE PROBLEM 1

C . SCO PE ... 2

D. THESIS ORGANIZATION .. 3

I1. PREVIOUS W ORK .. 4

A. INTRODUCTION .. 4

B. NASA OM V .. 4

C. NASA EXPLORER MMS .. 4

D. NAVAL POSTGRADUATE SCHOOL AUV 5

1. Vehicle Description .. 5

2. Simulation Environment .. 6

11. THE RATIONAL BEHAVIOR MODEL 9

A. INTRODUCTION .. 9

B. STRATEGIC LEVEL .. 10

C. EXECUTION LEVEL .. 10

D. TACTICAL LEVEL ... 11

E. TACTICAL LEVEL REQUIREMENTS 12

IV. TACTICAL LEVEL PROGRAMMING LANGUAGES 14

A. BACKGROUND .. 14

B. A D A ... 14

C. CLA$SJC-AD 15

D. ADA 9X 16

E. COMPARISON OF PROGRAMMING LANGUAGES 16

V. TACTICAL LEVEL IMPLEMENTATION 18

A. OVERVIEW.', 18

iv

B. DESIGN M ODEL 18

C. IMPLEMENTATION MODEL 20

1. Description of Communication 20

2. Description of Objects ... 24

a. O O D .. 24

b. N avigator .. 24

c. G uidance .. 25

d. GPS Control .. 26

e. Sonar Control ... 26

f. Dead Reckoning ... 26

g. M ission Replanner ... 26

h. Engineer ... 26

i. W eapons Officer .. 27

j. Comm and Sender .. 28

k. Sensory Receiver .. 28

1. M ission M odel .. 28

m . W orld M odel ... 28

n. Data Recorder .. 29

3. M ission Environment .. 29

VI. TESTING AND RESULTS ... 32

A. INTRODUCTION ... 32

B. SIMULATION ENVIRONMENT 32

C. SCENARIOS ... 34

1. M ulti-Phase M ission .. 34

2. Multi-Phase Mission With Route Replanning 35

D . RESULTS ... 35

VII.CONCLUSIONS AND FUTURE WORK 37

A. RESEARCH CONTRIBUTIONS 37

V

B. SUGGESTIONS FOR FUTURE RESEARCH 37

APPENDIX A. TACTICAL LEVEL SOURCE CODE 39

APPENDIX B. TRACES OF MISSION EXECUTION 112

APPENDIX C. AUV SIMULATOR USER'S GUIDE 128

LIST OF REFERENCES ... 130

INITIAL DISTRIBUTION LIST .. 132

vi

LIST OF FIGURES

Figure I The Naval Postgraduate School AUV 11 6
Figure 2 Original AUV Simulator Test Configuration 7
Figure 3 RBM Structure ... 9
Figure 4 Tactical Level Programming Languages. 17
Figure 5 Tactical Level Design Model 19
Figure 6 Tactical Level Implementation Model 21
Figure 7 Example of Task Communication 22
Figure 8 Router Task Communication 24
Figure 9 Expanding Box Search Pattern and Algorithm 27
Figure 10 Multitasking in Route Replanning 31
Figure II AUV Simulator Test Configuration and Vehicle Configuration 33
Figure 12 Multi-Phase Mission Scenario 34
Figure 13 "initialstate" Data File .. 128
Figure 14 "waypoints" Data File ... 128
Figure 15 "final-goal" Data File ... 129
Figure 16 "obstacles" Data File .. 129

Vii

ACKNOWLEDGEMENTS

This work drew support from many quarters. First of all, I would like to acknowledge

my wife, Neva, for her patience and support during many long nights in the lab and many

distracted hours at home.

I would like to thank Dr. Ron Byrnes and Don Brutzman for laying the foundation for

those of us working on the AUV project in the Computer Science department. Thomas

Scholz contributed to the success of this project by helping to debug a large volume of our

combined code and keeping a sense of humor in the process. Dr. Se-Hung Kwak provided

helpful guidance and encouragement all along the way.

Without the conutibutions of all these people and many others, this work would not

have been possible.

Viii

I. INTRODUCTION

A. BACKGROUND

Controlling autonomous vehicles through software is a challenging area of software

engineering requiring a variety of resources. Neither completely relying on a single

programming paradigm nor simply throwing together all available programming resources

can provide the long-term stability necessary for an autonomous vehicle software system.

A software architecture with multiple levels of abstraction is extremely important for

handling the complexity of autonomous operations in the real world. Such an architecture

provides for the use of specific programming paradigms to address particular levels of a

problem. Reliability and maintainability of software then become key factors in

determining the applicability of a programming paradigm to a certain level of abstraction,

and they are built into the system instead of being produced incidentally.

To model the real world, autonomous vehicle software systems need to be capable of

managing concurrency. Events, and thus behaviors, in the real world are neither sequential

in time nor centralized in a single, physical entity. Concurrency involves the twin issues of

multitasking, in which a single entity performs multiple operations at the same time, and

distribution, in which many entities perform separate tasks simultaneously. In addition,

reuse of software is very desirable in this complex development environment. The object-

oriented programming paradigm with its built-in inheritance mechanism facilitates the

reuse of existing implementations [Kwak90] [Toml89]. The capability to implement a

concurrent, object-oriented solution is a powerful tool in accurately modeling the problem

domain and an effective weapon in battling against software complexity.

B. STATEMENT OF THE PROBLEM

The Rational Behavior Model (RBM) is a multi-level, multi-paradigm software

architecture for the control of autonomous vehicles. The top, or Strategic, level consists of

general mission directives and the bottom, or Execution, level consists of specific vehicle

I

commands [Byrn93]. Both have been specified and implemented in some detail. The

middle, or Tactical, level, is responsible for breaking down the broad guidance of the

Strategic level into simple pieces of behavior that the Execution level can carry out. This

level is thus the crucial bridge that connects the other two distinct parts of the model, but it

has been implemented in only a very limited way.

The design of the Tactical level is well-suited to the object-oriented paradigm and has

been described in [Byrn93]. The behaviors of the Tactical level can be grouped together

quite easily under objects in an object hierarchy. Implementing the relationships of this

hierarchy requires an object-oriented or object-based language1. The complex, time-

consuming nature of certain tasks such as search, homing, and mission replanning make

concurrent programming facilities extremely desirable as well so that control of the vehicle

can be maintained continuously throughout a mission, insuring the vehicle's rational

behavior. Therefore, the problem is to find a programming language to represent the

concurrency and the object-oriented nature of the Tactical level well and to build an

implementation model.

C. SCOPE

The primary goal of this research is to develop a working model of the Tactical level

of RBM in a currently available programming language using object-oriented techniques

and programming language constructs for concurrency. For this research, concurrency is

limited to multitasking, or the interleaving of multiple processes on a single processor.

Distribution is beyond the scope of this work. This thesis focuses on a few areas of research,

including representing concurrency in software, implementing object-oriented design, and

the suitability of current programming languages for these two tasks.

1. Object-based languages have features to support the principles of data abstraction and informa-
tion hiding, while object-oriented languages have mechanisms for inheritance, dynamic binding,
and polymorphism in addition to those features. However, as Booch notes, "... it is possible and
highly desirable for us to use object-oriented design methods for both object-based and object-ori-
ented programming languages." [Booc9l, p. 361

2

D. THESIS ORGANIZATION

Chapter II surveys previous work on software systems that have implemented object-

oriented design and concurrency. Chapter HI gives an overview of RBM. Chapter IV

discusses the programming languages considered for implementing the Tactical level. In

Chapter V, the Tactical level implementation is explained in detail. Chapter VI examines

testing of the implementation in the laboratory on the AUV simulator. Chapter VII provides

a summary of conclusions and suggestions for future research. Appendix A lists the source

code for tl . Tactical level. Appendix B gives a trace of the execution of two multi-phase

mission scenarios. Appendix C is a user's guide to the AUV simulator used in this research.

H. PREVIOUS WORK

A. INTRODUCTION

There have been numerous efforts to implement concurrency using multi-tasking in

real-time software applications. Three projects with varying timing requirements are

described here. All three projects have employed some form of the Ada programming

language and have either attempted to use or intend to use Ada's task construct for

concurrency.

B. NASA OMV

NASA's Orbital Maneuvering Vehicle (OMV) is a semi-autonomous spacecraft

designed to provide services to other spacecraft, including delivery, retrieval, reboosting,

and deboosting. The craft has automatic navigation and rendezvous capabilities but

requires human control for terminal operations such as docking with NASA's Space

Station. Control for the OMV can be provided from the space shuttle, from the ground, or

from the Space Station. The OMV can carry various mission kits and has a nine month on-

orbit capability.

Standard Ada was used for prototyping on the software system. Tasking was rejected

for this system, however, due to the system's strict real-time requirements. In particular, the

need to change the priority of a task at run time and the need to specify a task as non-

preemptible by other tasks to meet certain time constraints were seen as necessary features

not provided by the Ada Run Time System (RTS). Prototype tasking algorithms were much

slower and larger than the established sequential ones. As a result, Ada tasking was not

used further in the project [Howl88].

C. NASA EXPLORER MMS

NASA's Explorer Multimission Modular Spacecraft (MMS) is an unmanned orbiting

space vehicle with a replaceable payload. The payload is a science instrument replaced by

4

the space shuttle every 18 to 24 months. Control of Explorer, such as attitude commands

are generated by the ground, the onboard processor, or the onboard coprocessor.

Standard Ada was used in a benchmark test with the intent of seeing how it would

handle some of the spacecraft's software functions, including attitude determination

support, coprocessor system monitoring, and coprocessor self-checks. Developers

considered tasking viable for this system with some changes in the task scheduler to reduce

overhead time. Published task rendezvous time of 800 microseconds was not critical for

this implementation. What was important was that task priorities could be set and

synchronous and asynchronous interrupts handled due to minimal human control

(Communication with the ground is limited to about 15 minutes every 1 1/2 hours). Planned

modifications to the Ada RTS were designed to identify the cause of an interrupt and the

portion of code involved in a telemetry report to the ground [Scot88].

D. NAVAL POSTGRADUATE SCHOOL AUV

I. Vehicle Description

The Naval Postgraduate School Autonomous Vehicle (AUV) is an unmanned,

untethered, robotic submarine. Its purpose is to provide multi-area research for students and

faculty and its projected missions include search, surveillance, mapping and intervention

activities. The current model of the vehicle, shown in Figure 1, is 7 feet long, weighs

approximately 400 pounds, and has a maximum speed of 2 knots. Due to its relatively small

size and low cost, the vehicle is an ideal research platform. Power for control surfaces and

cross-body thrusters is provided by a battery-based system which can last 2 to 3 hours on a

charge. The vehicle is controlled by two separate processors on Gespac platforms: one for

vehicle actuator control and one for mission control and navigation. Sonar, inertial

navigation, and global positioning systems are also incorporated onboard [Heal92].

Software control is provided by RBM, which is described in Chapter HI. The

high-level navigation and system-monitoring functions comprise the Tactical level. Byrnes

in [Byrn93] developed a Tactical level instantiation using Classic-Ada, a preprocessor for

5

68030]OS-9 80386/MS-DOS
Vehicle Control Mission Control
Computer Computer

:A

Side View

Figure 1 The Naval Postgraduate School AUV II

the Ada language which produces object-oriented extensions such as inheritance and

dynamic binding.

2. Simulation Environment

Simulation testing is performed on the software in the laboratory before the

software is placed in the actual vehicle. Testing of the model in the laboratory was

accomplished by linking three separate processors through an Etheret connection using

stream socket communications. The Strategic level was programmed in Prolog and CLIPS

and ran on a Sun SPARCstation 4/280 using the UNIX operating system. The Tactical level

was written in Classic-Ada and was also hosted on a Sun SPARCstation 4/280 running

6

UNIX. The Execution level and the simulator itself were programmed in C and ran on a

Silicon Graphics 4D/340VGX workstation using the IRIX operating system. The three-

processor test configuration is shown in Figure 2.

Sun SPARCstations Ethernet

(UNIX)

Silicon
Graphics
workstation

(miRX)

Strategic Tactical Execution
Level Level Level

Figure 2 Original AUV Simulator Test Configuration

This Classic-Ada implementation of the Tactical level is truly object-oriented in

the sense that it allows inheritance of object characteristics and provides dynamic binding

of operations to objects. However, this version employs a sequential approach to carry out

required behaviors which presents some problems for multiple modes of operations. This

thesis research is an extension of that work in an attempt to add Ada tasking for concurrent

7

operations on the Mission Control Computer to fulfill the intent of RBM. The new Tactical

level implementation relies on the Ada RTS without modification for task scheduling and

is discussed in Chapter V.

8

III. THE RATIONAL BEHAVIOR MODEL

A. INTRODUCTION

The Rational Behavior Model (RBM) is an autonomous vehicle control software

architecture composed of three distinct levels. The levels of RBM are based on the degree

of abstraction of the problem domain, and they are, from highest to lowest: the Strategic,

Tactical, and Execution levels [Kwak92]. The structure of RBM is illustrated in Figure 3.

Programming
Paradigm

Strategic
Logic Level

Object-oriented Tactical Level

Imperative Execution Level

Level of
Abstraction

Figure 3 RBM Structure

9

The power of RBM for software engineering lies in its tailoring available design

resources to address the important aspects of the problem at hand. When the programming

paradigm matches the abstraction of the problem instead of being forced into it, the result

is robust and easily understood software. Such software can be modified with little

difficulty, satisfying one of the key objectives of software engineering.

B. STRATEGIC LEVEL

The Strategic level stands at the top of the RBM hierarchy. At this level, the essence

of a mission is expressed using clear, high-level logic so that the vehicle can act in a rational

manner. Logic for sequencing behaviors is encapsulated at this top level. Simplicity is

maintained by the Strategic level having no internal memory and no knowledge of

operational details. Required mission behaviors are provided by the process of goal-driven

decomposition. A root or mission goal is repeatedly refined into its constituent subgoals

until primitive goals are reached. Implementation is initiated at this point. Because the

reasoning process proceeds according to a deliberate sequence, the Strategic level can be

expressed quite naturally in a rule-based programming language like Prolog or CLIPS. The

rule set of the Strategic level is divided into mission specification and doctrine. The mission

specification part deals with knowledge unique to a mission, while the doctrine part

concerns mission-independent knowledge that is usually tied to the nature of the vehicle.

Once a primitive goal is identified, the Strategic level calls on the Tactical level to

start some type of appropriate behavior. These calls can be either queries or commands.

Queries are information requests which require a binary response. Commands are orders

requiring no feedback other than an acknowledgment of completion of the ordered task. If

more information is needed to make a decision after a command has been issued, queries

are used to poll the Tactical level [Byrn93I.

C. EXECUTION LEVEL

The Execution level lies at the other end of the RBM hierarchy. It is responsible for

the multitude of complex physical actions that comprise the primitive goals of the Strategic

10

level; therefore, it must guarantee basic vehicle stability. Stability is provided by a series of

autopilots driven by servo loops. In addition, processes with hard real-time scheduling

constraints are encapsulated at the Execution level. While computation at the Strategic

level is purely symbolic, computation at the Execution level is completely numeric to

ensure timing requirements are met. Implementation of this level requires an imperative

programming language with good numeric computation speed such as C or Fortran.

Since it is the base of the RBM hierarchy, the Execution level must act as the

intermediary between the software and the hardware. This level receives setpoints and

vehicle mode information from the Tactical level, and its autopilots must use these data

repeatedly until they are updated. Autopilot commands are sent to motors, control surfaces,

and other hardware devices using digital and analog signals. Information is received from

analog hardware devices in the form of digital readings. Changes in hardware are mostly

contained within the Execution level unless new tasks or new hardware capabilities are

added. In this case, the Tactical level must be modified as well [Byrn93J.

D. TACTICAL LEVEL

Thf: Tactical level is the middle level in the tri-level RBM hierarchy and is the focus

of this research. This level is the crucial link between the knowledge-based orientation of

the Strategic level and the numeric-based orientation of the Execution level. Therefore, the

primary objective of the Tactical level is to act as a bridge between the two end levels and

cannot be discussed without reference to these two levels. This level responds to queries

and commands from the Strategic level and inputs from the Execution level through

specific behaviors.

In its role as coordinator between the Strategic level and the Execution level, the

Tactical level must be an analyst and translator. Abstract behaviors from the Strategic level

must be analyzed and then translated into their executable details to be performed by the

Execution level. The Tactical level takes the general descriptions of what the vehicle is

supposed to do and supplements these with timing details and physical constraints of the

11

vehicle as it decomposes them into simpler and simpler behaviors. The resulting primitive

behaviors, which consist of data requests and setpoint and control mode commands, are

sent to the Execution level to be carried out [Kwak93].

Tactical level behaviors can be grouped under the entities which perform them. These

entities have state, behavior, and identity and are called software objects [Booc9l].

Objects, in turn, are organized into a hierarchy such that each parent object decomposes

into one or more dependent, or child, objects. The object at the top of the hierarchy acts as

the interface between the detail-free Strategic level and the rest of the hierarchy. An object

at the Tactical level only has knowledge of its parent and its children and nothing else. To

access any other object, including its own siblings, an object must go through the parent of

that other object. The only exception to this rule is that data required by multiple objects

can be retrieved directly from specifically designated database manager objects [Byrn93].

Modifications and additions to the object hierarchy are facilitated by this structure. In

addition, parallel threads of control can be identified among objects under different parents

for concurrent execution [Kwak93].

E. TACTICAL LEVEL REQUIREMENTS

Just as the quality of a bridge depends on its keystone, the strength of the Tactical level

as an interface between the Strategic and Execution levels in RBM depends on its design

specification. An appropriate structure for the design specification of the Tactical level is a

basic requirement for implementation. The design pattern used for this research was the

watch crew of a submarine, which provides a representative, well-understood model for

Tactical level relationships [Byrn93].

The design specification is not very useful unless it is supported by appropriate

programming facilities. A programming language is the raw material out of which the

Tactical level bridge is built. Its utility as a bridge depends on the appropriateness and

power of the language chosen for implementation. The least that is required to represent the

relationships of this level is an object-based language, although an object-oriented

12

language is preferred to accommodate future modification and growth. Some method for

implementing concurrency is also necessary. Choosing a programming language is

discussed in the next chapter.

13

IV. TACTICAL LEVEL PROGRAMMING LANGUAGES

A. BACKGROUND

There are numerous programming languages that are object-oriented or object-based.

This number is reduced substantially when the criterion of constructs to support

concurrency is considered. Many powerful object-oriented languages such as C++ and

CLOS do not presently provide explicit support for concurrency. The remaining subset of

languages is limited to Ada and its variants. The applicability of these languages to the

Tactical level problem domain is now examined.

B. ADA

Ada is an object-based language developed for the United States Department of

Defense to handle very large, software-intensive systems. Ada has numerous features

which support object-oriented design, including packages, tasks, and generic units

[Booc91]. Since Ada has objects but does not have explicit classes, however, it has no

mechanism for inheritance, dynamic binding, or polymorphism in its present form.

Therefore, message passing between objects is detailed, complicating design in a large

software system incorporating many related classes of objects. This does not pose a

problem for the Tactical level as it is currently designed for the AUV, because an object

hierarchy is sufficient to specify relationships. Future growth and redesign would be better

accommodated by a class-based language.

Concurrency is supported in Ada through its task construct. Tasks are based on the

Communicating Sequential Processes (CSP) model [Hoar78] in which processes

synchronize and then pass messages through input and output statements. This

synchronization is called a rendezvous and is required between two processes before

communication can occur. If one task reaches the rendezvous point before the other, it must

wait or accept another task that is ready to pass a message. Exclusive access to data or a

resource is thus built in with the CSP model, since a task can only communicate with one

14

other task at any given time. Ada's accept statements and entry calls function in the same

way as CSP's input and output statements, respectively, with some added features. First,

communication in Ada tasks is bidirectional, while it is strictly unidirectional in CSP tasks.

Second, to CSP's parameter copying, the Ada rendezvous adds the capability for the called

task to execute statements and return results to the calling task [Geha84]. Although tasks

cannot stand alone, they can be encapsulated as objects, providing a powerful abstraction

mechanism for object-based applications that are concurrent in nature. Task objects are an

excellent representation for the objects of the Tactical level which must perform multiple

functions.

C. CLASSIC-ADA

Classic-Ada is a preprocessor for Ada which adds capabilities needed to complete the

object-oriented paradigm. Processing Classic-Ada code yields pure Ada source code with

special data structures to support inheritance, dynamic binding, and polymorphism. Data

and behaviors for an object are written as instance variables and instance methods,

respectively. These characteristics are unique to that object and its class. An object

communicates with another object simply by using a send statement with the object name

and the instance method name [Soft92]. This extension to Ada provides a much more

concise method for message passing between objects. Messages can be passed without any

bulky or artificial syntax as in Ada. Also, a class structure can be built which facilitates

modifications to the Tactical level because of the built-in inheritance mechanism.

Concurrency is supported in Classic-Ada through the Ada task construct. However,

there is no provision for implementing tasks at the object level. Tasks can only be declared

within methods, severing the link between objects and tasks that is available in Ada. This

restriction severely limits the usefulness of Classic-Ada for implementing object-oriented

designs that involve a significant amount of concurrency, such as the Tactical level.

15

D. ADA 9X

Ada 9X is a revised version of Ada which updates the 1983 ANSI Ada standard.

Although it is not yet commercially available, Ada 9X deserves examination. It will soon

become the standard for Ada, and it incorporates some object-oriented capabilities. Ada 9X

provides for inheritance, dynamic binding, and polymorphism through its tagged type

construct, which allows components to be added to a type when it is derived. Public and

private record types are the only types that can be tagged.

Ada 9X also enhances the basic task construct for concurrent programming. More

flexibility is provided in choosing priority and scheduling rules, task delay times can be

made explicit, and asynchronous transfer of control is provided by additions to the task

select statement [DoD93]. Nevertheless, the object-oriented paradigm is not extended to

task types; task types cannot be tagged and thus are static in nature1 . Since its task type is

unchanged from Ada, Ada 9X offers no significant advantage for representing the

concurrency of the Tactical level.

E. COMPARISON OF PROGRAMMING LANGUAGES

Ada, Classic-Ada, and Ada 9X all have advantages and disadvantages for the Tactical

level application. Ada supports concurrency well with its rendezvous, providing a high-

level model of communication to enforce mutual exclusion. Classic-Ada extends Ada but

superimposes object-oriented features at a higher level rather than integrating them with

Ada [Atki9l]. The lack of object-level tasking is a serious drawback. Ada 9X offers

promise for integrating object-oriented features with Ada in many areas but not in the area

of concurrency. What is needed is a language that combines object-oriented and concurrent

concepts, considering classes, objects, and tasks together. Figure 4 illustrates the current

programming language situation. In the absence of such a language, Ada was chosen for its

availability and the flexibility of its task construct.

1. In Ada 9X. as in Ada. the number of tasks of a task type can be dynamic.

16

Ada Classic-Ada

+T ss (+ Tasks

TaksObjects K

Ada 9X

Objects Classes

9

Classes

Objects

Tasks

Figure 4 Tactical Level Programming Languages.

17

V. TACTICAL LEVEL IMPLEMENTATION

A. OVERVIEW

The quality of the Tactical level implementation depends significantly on the quality

of its design. As mentioned in Chapter IIl, the watch crew of a manned submarine offers a

natural model for representing the entities and behaviors of the Tactical level. Using this

model, an object hierarchy can be built which supports an implementation model. The

implementation model is the method of construction of the Tactical level bridge; it

determines how the raw material of the programming language gets put together on the

keystone of the design model.

B. DESIGN MODEL

The design specification for the Tactical level is given in Figure 5. The blocks in the

diagram stand for distinct entities within the Tactical level structure, and each one

corresponds to a software object. The hierarchical structure of the Tactical level

encompasses most of the objects and is indicnted by the dotted lines between them. The

AUV Officer of the Deck (OOD) provides overall operational control at this level and

stands at the top of the hierarchy. The OOD also provides the sole interface between the

Strategic and Tactical levels. Top level primitive goals are handed to the OOD so that he

can activate the behaviors understood by the Tactical level to satisfy those goals. In the

watch crew, the Captain gives commands or requests the status of the submarine's systems

from the OOD. The OOD, in turn, in gives the required orders to satisfy the goal or answer

the query issued by the Captain.

The Tactical level objects cover all the behaviors that the vehicle can perform.

Coordinating the operations of each object, the OOD insures each task is completed

appropriately. Behaviors are implemented as methods within an object. For the most part,

behaviors require the involvement of multiple objects. Communication between objects is

accomplished through message passing. As mentioned. communication is limited to

18

t.i I'%t..il C c

V 4-)I7

41-

>0

Ce U,

F0AD

Figure 5 Tactical Level Design Model

19

parent-child pairs. In this scheme, efficiency is sacrificed to gain modularity of code and

ease of understanding for the user.

Just as all Strategic level communications must go through the conduit of the OOD,

all contact with the Execution level is similarly constrained. Command packets comprised

of setpoints and modes are transferred solely through the Command Sender object under

the direction of the OOD. In addition, telemetry data is accepted from the Execution level

by the Sensory Receiver object exclusively. The limitations on these interfaces eliminate

command and data discrepancies.

There are a number of objects that are disconnected from the object hierarchy in the

Tactical level. These correspond to databases that serve any other requesting object any

time their respective data are needed. They contain the state of the mission (Mission

Model), the perceived state of the environment (World Model), recorded mission history

(Data Recorder), and current sensor readings (Sensory Receiver) [Byrn93].

C. IMPLEMENTATION MODEL

The implementation model gives life to the relationships expressed in the design

model. The structure of the implementation model using Ada is illustrated in Figure 6. The

methodology for this design was to provide concurrency between objects while adhering to

the control requirements of RBM. Getting the AUV to execute a mission involving multiple

modes of operation and showing that it can replan a mission in progress without giving up

control were the goals of the implementation. The code for the implementation in Ada is

found in Appendix A.

1. Description of Communication

Commands and queries are passed between Tactical level objects by means of

task entry calls with boolean flags. Each command issued to the OOD has a goalflag which

gets set to true when execution of the command is complete. A command is attempted until

the goalflag is set to true to insure that it gets executed. Each query has a returnflag and a

goal flag. The return flag gets set to true when the appropriate object has received the

20

hA- -I
UC

V0

0A

-E 0

UU

.- U-

0*
-U

Fiur 6 atclLee mlmntto oe

21L

query. In this case, the goal flag gets set based on a positive or negative response to the

query. A query is attempted until the return flag is set to true to insure that the query has

been communicated to the target object.

All upper level objects in the hierarchy are represented as tasks in Ada. Each of

these tasks consists of a set of accept statements, which are messages for behaviors that the

respective object or its children perform. Each accept statement further contains entry calls

to child objects, and this chain of message passing continues until an object is reached that

can execute part or all of a given command or answer a given query. An example of the

message passing pattern is shown in Figure 7.
...........~. . : °

taskA is

accept QUERY-A(GOALFLAG. RETURNFLAG: out BOOLEAN) do
if QUERY_A =TRUE then
GOALFLAG:= TRUE;

else
GOAL FLAG:= FALSE.

end if;
RETURNFLAG:= TRUE;

end QUERYA;

accept COMMANDA(GOAL_FLAG: out BOOLEAN) do
task A_ 1.COMMAND.A(GOALFLAG_)-
if GOALFLAGI = TRUE then

GOALFLAG:- TRUE;
else

GOALFLAG:= FALSE;
end if:

end COMMANDA;
end task A

• S.. I............°°"°................................... °..............°.. °................

task A_1 is

accept COMMANDA(GOAL_FLAG_1: out BOOLEAN) do
do COMMAND_A;
GOALFLAG_1 := TRUE;

end COMMAND_A;
end task A-1

Figure 7 Example of Task Communication

22

The lowest level objects are represented as procedures or functions, since these

objects consist of only basic operations. As leaves on the object hierarchy tree, these objects

require no further communication with any objects so implementing them as tasks would

introduce unnecessary overhead. However, these objects must still be able to communicate

with their parent objects while performing their respective functions to support RBM's

control scheme. Since the parent object task is suspended while it waits for the child to

complete its required behavior, some alternate way must be used to pass messages to the

parent during this time.

The method of alternate communication used in this research was a series of

router, or relay', tasks. A relay task waits until it is called by a task with data to send and

then immediately calls the next task in the series. This process continues until the data is

consumed. Use of these intermediary tasks allows for a loosely coupled implementation,

but this advantage must be balanced against the overhead of added tasks [Lema89]

[Niel88]. Relay tasks allow time-consuming behaviors such as search and homing to

continue while the primary route of communication is suspended awaiting an answer to

send back to the Strategic level. The situation is illustrated in Figure 8 using homing as an

example.

The database objects are also all implemented as tasks to insure only one object

at a time can access any one of them. Otherwise, Sonar Control, for example, could set the

vehicle's mission mode in the Mission Model while the OOD is attempting to read that

value. The Ada rendezvous enforces mutual exclusion, preventing such data

inconsistencies. Only the first entry call is allowed to participate in the rendezvous. All

others are queued and serviced sequentially.

1. Relay tasks are one of three types of intermediary tasks. Buffer tasks, which have an entry to
accept data from a producer and an entry to send data to a consumer when requested, and trans-
porter tasks, which request data using an entry call to a producer task and then provide the data to a
consumer through an entry call, are the other types of intermediary tasks.

23

Command packet

Suspended OOD QOD qRouter Relaying

"Do homing" command Homing setpoint commands

Suspended Navigator ute r RelayingI outer [Rlyn

"Do homing" command I Homing setpoint commands

Suspended [Guidance GuidanceS G Router Relaying

"Do homing" command

Performing oming Homing setpoint commands

homing Calculator nodand
guidance Sender

Figure 8 Router Task Communication

2. Description of Objects

a OOD

This object consists of two tasks, one for the main 0OD functions and one for

routing. As the top level of the object hierarchy, the main OOD task must contain accept

statements for all of the primitive goals issued by the Strategic level. Entry calls within each

accept statement activate the behaviors necessary to satisfy a particular goal. The main

0OD task must also coordinate these behaviors. The OOD relay task acts as a backup

channel to the Command Sender when the main OOD task is suspended waiting for a

command to be executed.

b. Navigator

This object also contains a main task and a routing task. The main Navigator

task is responsible for guidance, position estimation, and path replanning. This task's view

of the world at any given time extends only from its present position to the next waypoint

to make its operation as generic as possible. All mission details are encapsulated in the

Mission Model. Following the OOD's model, the main Navigator task passes on orders to

its subordinates using entry calls and coordinates their actions. In the case of mission

replanning, this coordination involves concurrency, as guidance for loitering must be

24

provided at the same time as the mission route is being replanned. The Navigator relay task

acts as a backup channel to the OOD when the main Navigator task is suspended waiting

for a command to be executed.

c. Guidance

This object is comprised of a main task and a routing task as well. The

responsibility of the main Guidance task is to provide the heading and depth setpoints to be

included in the command packet sent to the Execution level. The accept statements in this

task contain calls to procedures that do various types of guidance.

For this study, line-of-sight (LOS) guidance and homing guidance were both

implemented. The new command heading to a waypoint is computed for LOS guidance as

follows:

S= atan [(Ynext - Ycurr)1 (Eq)

cmd a a (Xnext_ Xcurr

where:

XCUr, Ycurr = X, Y components of AUV's current position.

Xnext, Ynext = X, Y components of next waypoint.

The new command heading to a target is computed for homing guidance using

the following equation:

t cmd = Tcurr + (Eq 2)

where:

Tcurr = Current vehicle heading.

= Sonar relative bearing to target.

The Guidance relay task acts as a backup channel to the Navigator when the

main Guidance task is suspended waiting for a command to be executed.

25

d OPS Control

This object is responsible for controiling the Global Positioning System

receiver and accessing it for navigation. This capability was not modeled for this research.

The GPS Control task in this implementation simply returns a positive response when a

GPS fix is requested. Research on integrating GPS in this environment is included in

[Stev93].

e. Sonar Control

This object issues sonar commands, checks for and logs objects, and monitors

the sonar for various tasks such as search. In this study, this object consists of a single task

which monitors the sonar range and bearing values while the vehicle executes the command

"do search pattern". The task executes an expanding box search algorithm until threshold

values for both range and bearing are detected from the sonar. The search pattern and

algorithm are shown in Figure 9.

f. Dead Reckoning

This object provides present position based on a known position fix, actual

heading, and elapsed time. The Tactical level dead reckoner serves as a backup to the

Execution level dead reckoner to crosscheck its operation. The dead reckoner was not

implemented for this study.

g. Mission Replanner

This object has a single task to perform local replanning for avoiding

obstacles and global replanning to accommodate a vehicle fault. Global replanning was

modeled by using a delay statement and instantaneously changing the mission route

through the Mission Model.

h. Engineer

This object consists of one task to monitor the condition of each vehicle

system. For this study, a thruster system problem was modeled by reducing the thrust level

26

B3,

B 12 Bik indicates the
B22 position in the

B32 B13 B. search pattern
BBwhere:

i = Box number
B21 Start[k =Leg number

Algorithm DOSEARCH_PATTERN
begin

NEXT_TIME := CLOCK + INTERVAL - TURNTIME;
LEGNUM:= 0;
Initiali:e SEARCH_HEADING
loop

if CLOCK > NEXT_TIME then --Change heading for new leg
if LEG_NUM = 2 then --Expand the box

LEGTIME := LEG_TIME + INTERVAL;
LEGNUM:= 1;

end if;
--Change heading to make box comer and normalize
if SEARCHHEADING > (PI / 2) then --Command heading > 0

SEARCHHEADING := SEARCHHEADING - (PI / 2);
else --Command heading <= 0

SEARCHHEADING := SEARCH_HEADING + (3 PI / 2);
end if:
LEGNUM:= LEGNUM + 1;
NEXTTIME := NEXT_TIME + LEG_TIME:

end if:
Receive SONARBEARING and SONARRANGE
Send SEARCH_-EADING and SEARCH_MODE
exit when SONARRANGE < RNGLIMIT and ABS(SONARBEARING) < BRGLIMIT;

end loop;
end DO_SEARCHPATI`ERN;

Figure 9 Expanding Box Search Pattern and Algorithm

gradually from an initial value until it moved below a given threshold. Accept statements

for all other system checks give a negative response to indicate the systems are operating

properly.

L Weapons Officer

The Weapons Officer is comprised of one task that is responsible for

monitoring and delivering the vehicle's payload. This capability was not implemented for

this research. The command to employ weapons simply returns a positive response.

27

J. Command Sender

This object accepts command packets built by the OOD and sends them to the

Execution level. A command packet consists of command X and Y coordinates, command

heading, command depth, command speed, and mode. Since this object just relays data and

cannot be accessed by any object other than the OOD, it was implemented as a procedure.

The physical separation of the Tactical and Execution levels in this study required

additional procedures for network communications.

k. Sensory Receiver

This object consists of a single task that accepts telemetry records from the

Execution level, stores the individual values, and provides the data to other Tactical level

objects when requested. Each sensory packet contains vehicle position represented as X

and Y coordinates, altitude above the bottom, and depth. This object is also responsible for

putting a time stamp on a sensory packet before sending it to the Data Recorder, although

this feature was not implemented in this work.

L Mission Model

This object is comprised of one task to hold and manage the waypoints that

make up the mission route and the vehicle modes for the various phases of the mission. For

the purposes of this thesis, these values were entered in data files which were read in by the

Mission Model upon initialization of the simulator.

m. World Model

This object has one task to hold and manage known objects and other

environmental data. Obstacles were the only type of environmental data used in this study.

These data were entered in files and read in during initialization as the Mission Model data

was.

28

n. Data Recorder

This object consists of a single task to accept and maintain telemetry records

and other explanatory messages for post-mission analysis. This object was not modeled for

this research.

3. Mission Environment

A mission in reality involves multiple phases and the possibility of unforeseen

system problems. Such an environment requires the AUV to operate in more than one mode

and the OOD to coordinate the behaviors of Tactical level objects concurrently as well as

sequentially.

The target mission for this research was a search-and-rescue mission developed

by the 1992 National Science Foundation workshop on furthering and evaluating autonomy

in the area of underwater vehicle technology [Stee92]. In this mission, the AUV must

traverse a given search area, locate a subsurface buoy, cut the buoy's mooring line, drop a

package as close to the buoy as possible, return to the launch site, and surface. The

interpreted rule set for this mission written in Prolog is presented in [Byrn93]. The mission

is broken down into the following four phases: transit, search, task, and return.

The vehicle has four modes that correspond directly to the four mission phases.

Transit and return are basically the same at the Tactical level. Navigation is executed using

LOS guidance after the Navigator receives each query about whether a waypoint is reached.

The only concurrency implemented in these modes is this execution of LOS guidance as

the Tactical level releases control back to the Strategic level for the next command to be

issued, and this is minimal.

Initiation of the search mode creates problems for a sequential implementation.

The Strategic level must know the search is completed before issuing the next command,

and so it waits on the OOD. The OOD waits on the Navigator, which waits on Sonar

Control. While all these tasks are suspended, control of the vehicle must be maintained for

the search through the objects that are waiting for the search to complete. Therefore, a

29

series of relay tasks is required in Ada to provide intra-object concurrency. The situation is

the same in the task mode while homing is being performed. The OOD waits on the

Navigator, which waits on Guidance, which waits on the Homing Calculator. The sequence

of router tasks allows homing guidance commands to get through while these other tasks

await the completion of homing.

When a system problem occurs, multitasking is required to maintain control of the

vehicle during route replanning. The Strategic level issues the command to start replanning

to the Tactical level when a system problem is encountered. The Navigator must send a

command to the Mission Replanner to start replanning simultaneously with a command to

Guidance to loiter. In Ada, this is accomplished by first issuing a parameterless entry call

to the Mission Replanner, which has a simple accept call and a separate set of statements

to perform replanning. This entry call is followed by an entry call to Guidance to loiter, and

the Navigator task is suspended until loitering is done. Suspension of the Navigator task

requires Guidance to utilize the router tasks to send commands to the Execution level as in

the case of the search and task modes. The replanning operation and loitering guidance

continue in parallel until replanning is done with the Ada RTS providing the scheduling of

the two tasks. The situation is illustrated in Figure 10. Thus, inter-object concurrency is

provided in addition to the intra-object concurrency provided by the relay tasks.

Operation of the implementation in a mission -oriented environment is discussed

in the next chapter.

30

Time

Navigator Task:
Start ReplanLoiter

Guidance Task: RTS Mission Replanner Task:
Loiter Scheduler Delay

S~Replan

Navigator Task:
Release control back

to Strategic level

Figure 10 Multitasking in Route Replanning

31

VI. TESTING AND RESULTS

A. INTRODUCTION

Testing the Tactical level implementation was accomplished using the simulation

facilities available in the laboratory. The simulation environment was set up to reflect the

actual hardware and software configuration on the NPS AUV. Mission scenarios were then

developed to represent the conditions of the search-and-rescue mission described in

Chapter V. The AUV graphical simulator provided for the entry of waypoints and obstacles

using Cartesian coordinates in a visual model of the NPS pool to support this scenario

development [Ong90].

B. SIMULATION ENVIRONMENT

To test the implementation, modifications were made to the configuration described in

Chapter II to reproduce the environment on the vehicle. Two processors were used to

represent the two processors on the actual vehicle. The Strategic and Tactical levels were

run together under the UNIX operating system on a Sun SPARCstation 3/180,

corresponding to the Mission Control Computer. The Strategic level was coded in CLIPS-

Ada, a preprocessor which compiles CLIPS code to Ada source code, to allow the Strategic

and Tactical levels to reside on the same processor. A description of this CLIPS-Ada

implementation and the code are presented in [Scho93]. The Tactical level was coded in

Ada, as described in Chapter V. The Execution level used the same C code as the previous

implementation and was again run under the IRIX operating system on a Silicon Graphics

4D/340VGX Workstation, corresponding to the Vehicle Control Computer. The two-

processor test configuration is shown in Figure 1I.

A sonar model was required for the simulation so that all phases of the mission could

be tested. Sonar was simulated by adding code to the Sensory Receiver to track range and

bearing to a target, which was represented by an obstacle entered into the World Model.

32

Mission Vehicle
Control Control
Computer Computer

Parallel
80386 Sea 68030

AUV (DR DOS) (OS-9)

Sun SPARCstation

(UNIX)

Silicon
Graphics
workstation

AUV (IRIX)

Simulator

Strategic Tactical Execution
Level + Level Level

(CLIPS-Ada) (Ada) (C)

Figure 11 AUV Simulator Test Configuration and Vehicle Configuration

This modification allowed the search and task modes of the AUV to be demonstrated

realistically.

A vehicle mode was entered along with each waypoint in the waypoint data file that

the simulator read into the Mission Model. In this way, a vehicle mode could be selected at

each waypoint based on the mission profile. Available choices for the vehicle mode include

transit, search, and returnl.

1. Task is an invalid choice because this mode is automatically triggered by the successful comple-
tion of the search mode. When the search ends, homing begins, initiating the task mode.

33

C. SCENARIOS

1. Multi-Phase Mission

The first scenario tested was the straight four-phase search-and-rescue mission.

For this scenario, a set of three waypoints and a single obstacle were chosen to cover the

four mission phases. Figure 12 depicts the mission route. The vehicle was programmed for

Search

I iTask (Homing)

' , .- Target

Waypoint

Transit Waypoint 2,

/ Return

Start
tWaypoint 3

Figure 12 Multi-Phase Mission Scenario

the transit mode during the first leg, corresponding to the transit phase of the mission. The

vehicle simply executes LOS guidance between waypoints in this mode. At the first

waypoint, the vehicle was programmed to change to the search mode and execute an

expanding box search pattern, corresponding to the search phase of the mission. The

vehicle was then set to transition automatically to its task mode, corresponding to the task

phase of the mission. The vehicle executes homing guidance in this mode with the obstacle

as its target. The vehicle completes the task upon reaching its target. After reaching the

34

target, the vehicle was programmed to change to the return mode for the last two legs,

corresponding to the return phase of the mission.

2. Multi-Phase Mission With Route Replanning

This scenario used the same mission route and vehicle modes as the first one. A

low thrust level, simulating a thruster system problem, was programmed to occur during

the transit phase. When faced with such a problem, the vehicle simultaneously loiters and

shortens its mission route to insure it reaches its final goal before system degradation

becomes too serious. Route replanning is accomplished in this implementation by sending

a message to the Mission Model requesting a shortened route. In reality, the Mission

Replanner would d =rmine this shortened route and pass the modified waypoint data to the

Mission Model in the message. The vehicle was programmed in this run to eliminate the

search and task phases of the mission and to go straight to its return mode for the mission's

return phase.

D. RESULTS

In the first scenario, the vehicle successfully executed all phases of the mission,

transitioning through all its modes and reaching all waypoints and the target. There was a

problem w.'th communication between the Tactical and Execution levels due to the

simulator protocol 2. This problem arose because of the combination of the long line of

communication to the Command Sender and the short line of communication to the

Sensory Receiver under RBM. The problem was averted by using a short delay during the

search and task modes.

In the second scenario, the vehicle accomplished both of its simultaneous tasks. It

loitered in place after detecting the system problem for the time of the programmed delay,

2. The simulator requires an even balance between transmissions and receptions. Whenever it sends
a set of data, it must receive a command packet before it can send another set. The actual vehicle is
not subject to this constraint.

35

proceeded to the first waypoint, transitioned to the return mode, and completed the return

phase of the mission.

Traces of the execution of the Tactical level code under these two mission scenariosare

found in Appendix B. A user's guide for the AUV simulator is provided in Appendix C.

36

VII. CONCLUSIONS AND FUTURE WORK

In this thesis, a concurrent, object-based implementation is developed and evaluated

for the Tactical level of the Rational Behavior Model. Previous work in this area has

focused on object-oriented implementation exclusively or minimal use of concurrent

programming facilities. However, the Tactical level is the essential bridge between the top

and bottom levels of RBM, and it must handle concurrent, as well as sequential, operations

among its objects for the success of the model in practice. In the absence of a programming

language that combines object-oriented features with constructs for concurrency, Ada

remains the best choice for an implementation of the Tactical level. The Tactical level

implementation in this work uses relay tasks for intra-object concurrency to handle

multiple phases of a mission and parameterless task entry calls for inter-object concurrency

to handle route replanning. Both of these mechanisms insure control of the vehicle is

maintained throughout a mission. Simulation testing shows that control of the vehicle is

indeed maintained continuously with such an implementation even in the face of time-

consuming tasks.

A. RESEARCH CONTRIBUTIONS

This research has numerous benefits. First, it provides an example for implementing

multitasking to aid in the control of autonomous vehicles. This capability is very important

for them to reflect rational behavior. Second, this work reiterates the value of the object-

oriented paradigm for this problem domain. Object-oriented techniques increase the

modularity and simplicity of the Tactical level implementation, improving the reliability

and maintainability of the software. Finally, this research reveals the weakness of current

programming languages in integrating concurrency with the object-oriented paradigm.

B. SUGGESTIONS FOR FUTURE RESEARCH

There are many ways to build on the foundation this research has established. One area

that was started in this work but not completed was transferring the simulator

37

implementation to the actual vehicle and testing it. Another area for future research is

developing a more complete implementation and testing how much load one processor can

bear. Extensive use of Ada tasks, especially such intermediary tasks as relay tasks, imposes

a significant amount of overhead, and time did not permit a full analysis of this factor in

this work. Finally, distributed implementations of the Tactical level represent fertile ground

for future work, since the NPS AUV is fitted with a transputer board. Progress in any of

these areas would make the Tactical level a stronger, more robust link in RBM.

38

APPENDIX A. TACTICAL LEVEL SOURCE CODE

--Title tacjv...s.a
--Author F.P. Thornton Jr.

-- Reised :26 Aug 93
--Compiler VADS
--System :Unix
--Description Specifications for procedures for Ada side of Clips-Ada/Ada

-- interface for simulator version of AUV Tactical level

package TACTICAL-.LEVEL 1 is

procedure READYVEHICLE..YOR..LAUNCH(GOALJLAG: in out IN4TEGER);
procedure SELECT_-FIRSTWAYPOINT(GOALJý-LAG : in out INTEGER);
procedure ALERTJJSER(GOALJLAG: in out iNTEGER);
procedure INJRANSIT!P(GOALJFLAG : in out IN4TEGER);
procedure TRANSlTDONE.Y(GOAL.YLAG : in out INTEGER);
procedure IN_-SEARCHY(GOALFLAG: in out INTEGER);
procedure SEARCHDONE P(GOAL _FLAG: in out INEGER);
procedure IN TASK P(GOAL, FLAG: in out INTEGER);
procedure TASKJ)ONEP(GOALK.FAG in out INTEGER):
procedure IN_RETURNP(GOAL_FLAG in out INTEGER);
procedure RETURNDONEJN(GOAL-FLAG: in out IN4TEGER);
procedure WAITT_FORRECOVERY(GOAL_-FLAG : in out INTGER);,
procedure SURFACE(GOALFLAG: in out INTEGER);
procedure DOSEARCHYPAT7ERN(GOALFLAG : in out iNTEGER);
procedure HOMIING(GOALFLAG :in out RINTEGER);
procedure DROPý_PACKAGE(GOALJFLAG: in out INTGER);
procedure GETGPS-JIX(GOALFLAG: in out INTGER);
procedure GETNEXTWAYPOINT(GOALJFLAG: in out INTGER);
procedure SENDSETPO TS.ANDODES(GOAL..YLAG: in out INTGER):
procedure REACH.Y/AYPOINTY(GOALFLAG: in out INTEGER):,
procedure GPS_NEEDEDP(GOALFLAG : in out IN1TEGER):
procedure UNKNOWN...OBSTACLE-P(GOALJLAG : in out INTGER):
procedure LOQ..NEWOBSTACLE(GOAL .FLAG: in out INEGER);
procedure LOITE(GOALYFLAG :in out INýTEGER);,
procedure START...LOCAL..REPLANNER(GOALJ,-LAG: in out INTEGER);
procedure START-.GLOBAL REPLANNER(GOAL...FLAG: in out INTGER);
procedure POWER_GONE_P(GOALYFLAG : in out INTEGER);
procedure COMPUTER..SYSTEIVLPROBYP(GOAL..FLAG : in out INTEGER);
procedure PROPULSIONSYSTEMPROB_.P(GOAL.YLAG: in out INTGER);
procedure STEERING_SYSTEM_'ROB2(GOALJLAG : notITEGER);
procedure DIVINCLSYSTEM_PROBP(GOAL...FLAG : in out INTEGER);
procedure BUOYNCYSYSTEMPROBP(GOALFLAG : in out INTGER);
procedure THRUSTER..SYSTEM_PROBP(GOALYLAG : in out INTEGER);
procedure LEAK..TEST!_(GOAL.YLAG : in out INTEGER);
procedure PAYLOADPROBY.(GOAL,_FLAG : in out INTGER);

end TACTICAL_LEVELI;

39

--Title tacjlv~ba
--Author FY. Thornton Jr.

-- Reise 26 Aug 93
--Compile VADS
.-System Unix
--Description Procedures for Ada side of CLIPS-Ada/Ada interface for

-- simulator version of AUV tactical level

with TEXTJO. OOD;
use TEXTJO, OOD;

package body TACTICAL_.LEVEL I is

package FLOAT_INOUT is new FLOAT_1O(FLOA*T);
package INTEGER-JNOUT is new INTEGERJIO(INTEGER):
use FLOATJNOUT. INTEGERINOUT:

procedure READY-.VEHICLE_FOR_LAUNCH(GOAL-JLAG: in out INTEGER) is
begin
THEOOD.CREATE:
THE_OOD.READYVEHCLE...FOR..LAUNCH(GOAL_-FLAG);
PUT(-READY_VEHICLEFORLAUNCH GOAL FLAG=:
PUT(GOALJFLAG, WlDTH=>3);
NEW-LINE;

end READYVEHICLEFORLAUNCH:

procedure SELECTFIRSLWAYPOINT(GOALFLAG: in out INT4EGER) is
begin

THEOOD.SELECT_FIRST _WAYPOINT(GOALFLAG):
PUT("SELECTFIRSTWAYPOINT GOAL FLAG
PUT(GOALFLAG. WIDTH=>3),
NEWLINE;-

end SELECT_F[IRSTWAYPOINT;

procedure ALERT...USER(GOALFLAG : in out PINTEGER) is
begin

loop
THE_..OD.ALERT..USER(GOAL..YLAG);

exit when GOALFLAG = 1;
end loop:
PUT("ALERT...USER GOAL FLAG=
PUT(GOAL.YFLAG. WIDTH=>3);
NEW-.LINE;

end ALERTJSER;

procedure INTANSITP(GOAL..FLAG: in out INTEGER) is
RETURNFLAG: INTEGER: 0;

begin
loop
THEOOD.INTRANSITP(GOAL _FLAG, RETURN_FLAG):

40

exit when RETURN-FLAG = I-.
end loop;,
PUT(INJ-RANSITP GOAL FLAG
PUIT(GOAL_-FLAG, WIDTH=>3);,
NEW._.LINE;

end INTRANSITP-

procedure TRANSIT_DONE_P(GOALJFLAG: in out RNTEGER) is
RETURNJFLAG: INTEGER: 0;

begin
loop

THE_OOD.TRANSIT_DONE _(GOAL,_LAG, RETURNFLAG):,
exit when RETURNFLAG = 1;

end loop;
PUT('TR.ANSITDONEP GOAL FLAG=
PUT(GOAI._FLAG, WIDTH=>3);
NEW_-LINE;

end TRANS ILýDONEP,

procedure IN_-SEARCHP(GOALFLAG : in out INTEGER) is
RETURNFLAG: INEGER: 0;

begin
loop
THE_OOD.INSEARCHP(GOAL-FLAG, RETURN..FLAG);
exit when RETURNFLAG = I-.
end loop,
PUT(1Nq_SEARCHP GOAL FLAG=;
PUT(GOAL_-FLAG, WIDTH=>3);
NEW_-LINE;

end INSEARCHP;

procedure SEARCH_DONEP(GOAL..FLAG: in out INTEMGER) is
RETURNFLAG: UNTEGER := 0;,

begin
loop

THE_-OOD.SEARCHDONE-!(GOALJFLAG. RETURN_FLAG):
exit when RETURNFLAG =1I-

end loop.
PUTC"SEARCHDONEP GOAL FLAG=1
PUT(GOALJ,-LAG. WIDTH=>3);
NEWLINE;

end SEARCHDONEP;

procedure INTASKP(GOAI.,FLAG : in out IN4TEGER) is
RETURNFLAG : INTEGER := 0;

begin
loop

THE..OOD.IN-TASK-P(GOALFLAG, RETURN-FLAG);
exit when RETURN-FLAG =1I-

end loop-,
PUT("INTASK.Y GOAL FLAG

41

PUT(GOALJFLAG, WIDTH=>3);
NEWLINE;

end ThLTASK.Y:

procedure TASKDONEP(GOAL-FLAG :in out INTEGER) is
RETURN-FLAG: UNTEGER: 0;

begin
loop
THE-.OOD.TASKDONEYP(GOAL.YLAG. RETURNJFLAG);
exit when RETURNFLAG = 1;

end loop;
PUT(T-ASKD)ONEP GOAL FLAG=;
PUT(GOALJ,-LAG, WIDTH=>3);,
NEW-.LINE;

end TASKDONE-P;

procedure IN_RETURN_P(GOAL.FLAG in out INTEGER) is
RETURN FLAG: INTEGER: 0;

begin
loop

THE-OOD.INRETURN..Y(GOAL-FLAG, RETURNFLAG);
exit when RETURNFLAG = 1;

end loop;
PUT("IN-RETURN-P GOAL FLAG=
PUT(GOAL._LAG. WIDTH=>3);
NEWLINE;

end IN_RETURN...P;

procedure RETURN_)ONEP(GOALFLAG: in out INTEGER) is
RETURN..FLAG -INTEGER := 0;,

begin
loop
THEOOD.RETURNDONEP(GOALFLAG. RETURN-FLAG);
exit when RETURNFLAG = 1*,

end loop;
PUT("RETURNDONEP GOAL FLAG=
PUT(GOAL.YLAG. WIDTH=>3),
NEWLINE-;

end RETURNDONEP-

procedure WAITyORRECOVERY(GOALJFLAG: in out INTEGER) is
begin

loop
THEOOD.WAITFOR_.RECOVERY(GOALFLAG);
exit when GOAL-R.FAG =1I-

end loop;
PUT('WAITFORRECOVERY GOAL FLAG=
PUT(GOAL.FLAG. WIDTH=>3);,
NEWj...INE;

end WAITFORRECOVERY;

42

procedure SURFACE(GOALFLAG : in out INTEGER) is
begin

loop
THEOOD.SURFACE(GOALFLAG);
exit when GOALFLAG = 1;

end loop;
PUT("SURFACE GOAL FLAG =

PUT(GOAL_FLAG, WIDTH=>3);
NEWLINE;

end SURFACE;

procedure DO_SEARCHPATTERN(GOALFLAG: in out INTEGER) is
begin

loop
THECOD.DOSEARCHPATIERN(GOALFLAG);
exit when GOAL.FLAG = 1;

end loop;
PUT("DCOSEARCHPATtERN GOAL FLAG =

PUT(GOALFLAG, WIDTH=>3);
NEW LINE;

end DOSEARCHPATTERN:

procedure HOMING(GOALFLAG : in out INTEGER) is
begin

loop
THEOOD.HOMING(GOALFLAG);
exit when GOAL-FLAG = 1;

end loop;
PUT("HOMING GOAL FLAG -";
PUT(GOALFLAG, WIDTH=>3);
NEWLINE;

end HOMING;

procedure DROPPACKAGE(GOALFLAG: in out INTEGER) is
begin

loop
THEOOD.DROP PACKAGE(GOAL FLAG);
exit when GOALFLAG = 1;

end loop;
PUT("DROPPACKAGE GOAL FLAG =

PUT(GOAL_FLAG, WIDTH=>3);
NEWLINE;

end DROPPACKAGE;

procedure GETGPSFIX(GOALFLAG : in out INTEGER) is
begin

loop
THEOOD.GETGPSFIX(GOALI.FLAG);
exit when GOALFLAG = 1;

end loop;
PUTCGETGPSFIX GOAL FLAG =

43

PLJT(GOAL-FLAG, WIDTH=>3);
NEW_,LINE;

end GET-GPS-FIX;

procedure GETNEXTWAYPOINT(GOALJLAG : in out INTEGER) is
begin

loop
7HNE_.OOD.GET...NEXT_WAYPOINT(GOAL FLAG):
exit when GOALFLAG = 1;

end loop,
PUT("GETJ4NEXTWAYPC)INT GOAL FLAG
PUT(GOALJ-LAG, WJDTH=>3);
NEWLINE;

end GETNEXT._WAYPOINT;

procedure SENDSETPOLNT...AND.YMODES(GOAL_FLAG: in out INTEGER) is
begin

loop
THE_-OOD.SENDSETPOINTSANDMODES(GOALJLAG);
exit when GOAL_FLAG =1;

end loop;,
PUT("SEND_-SETPOINT_ANDMODES GOAL FLAG=1
PUT(GOAL_-FLAG, WIDTH=>3):.
NEWLINE;

end SENDSETPOINTSANDMODES;

procedure REACHNAYPOINT!_(GOALFLAG :in out INTEGER) is
RETURNFLAG: INTEGER :=O;-

begin
loop

THEO)OD.RBACH_WAYPOINT P(GOAL FLAG. RETURNFLAG):
exit when RETURN-FLAG =1;

end loop;
PUT("REACH_WAYPOINTP GOAL FLAG
PUT(GOAL FLAG. WIDTH=>3);,
NEWLjINE;

end REACHWAYPOINTP;

procedure GPS_NEEDEDJ_(GOAL.,FLAG : in out INTEGER) is
RETURNFLAG : INTEGER := 0;

begin
loop
THEOOD.GPS NEEDED -P(GOAL ,FLAG. RETURNFLAG);
exit when RETURNFLAG = 1.

end loop-,
PUT(-GPSJ4EEDEDYP GOAL FLAG=
PUT(GOAILJ-LAG, WIDTH=>3);,
NEWLINE;,

end GPSNEEDEDP,

procedure IJNKNOWN..OBSTACLE.Y(GOALFLAG : in out IN4TEGER) is

44

RETURNFLAG: INTEGER: 0:
begin

loop
THEOOD.UNICNOWNmOBSTACLEP(GOAL FLAG, RETURN-FLAG);
exit when RETURNFLAG = 1;

end loop:
PUTC1JNKNOWNOBSTACLEP GOAL FLAG=
PUT(GOAL_-FLAG, WIDTH=>3);
NEW_-LINE:

end UNKNOWNOBSTACLEP-

procedure LOGNEWOBSTACLE(GOAL_FLAG: in out INTEGER) is
begin

loop
THEOOD.LOGNEWOBSTACLE(GOALFLAG);
exit when GOAL-FLAG= L,

end loop,
PUT("LOG_-NEW_-OBSTACLE COAL FLAG=;
PUT(GOALFLAG, WIDTH=>3j;
NEW -L[NE,

end LOGNEWOBSTACLE:

procedure LOITER(GOAL.JLAG: in out IN4TEGER) is
begin

loop
THE_-OOD.LOITER(GOAL..FLAG):.
exit when GOALFLAG =1,

end loop:
PUTrCLOITER GOAL FLAG
PUT(GOALFLAG, WIDTH=-,3):
NEWLINE;

end LOITER:

procedure STARTLOCALREPLANNER(GOAL-FLAG: in out INTEGER) is
begin

loop
THEOOD.STARTLOCALREPLANNER(GOAL FLAG);,
exit when GOAL-FLAG =1;

end loop;
PUTC"STARTLOCALREPLANNER GOAL FLAG
PUT(GOAL_FLAG, WIDTH=>3);
NEWL.INE;

end STARTLOICALREPLANNER;

procedure START_-GLOBALREPLANNER(GOALJLAG: in out INTEGER) is
begin

loop
THE_OOD.STARTGLOBALREPLANNER(GOAL ,FLAG);
exit when GOALFLAG =1I-

end loop:
PUTC"STARTGLOBALREPLANNER GOAL FLAG=1

45

PUT(GOAL.FLAG. WIDTIH=>3),
NEW_.LINE;

end START-GLOBALREPLANNER;

procedure POWERGONEP(GOAL FLAG: in out INT7EGER) is
RETURN-FLAG: INTGER: 0,

begin
loop
THEOOD.POWERGONE_-P(GOAL FLAG, RETURNJFLAG);
exit when RETURN-FLAG =I;

end loop-,
PUTC'POWERGONEP GOAL FLAG
PUT(GOALFLAG, WIDTH=>3);
NEW_LINE;

end POWERGONEP;

procedure COMPUT ERSYSTEM-YROB-P(GOAL_.FLAG :in out INTGER) is
RETURNFLAG: INTEGER := 0;

begin
loop
THEOOD.COMPUTERSYSTEMPROW I'(GOAL FLAG. RETURNFLAG);
exit when RETURNFLAG = 1;

end loop;
PUT("COMPUTERSYSTEMPROBP GOAL FLAG=
PUT(GOAL -FLAG. WIDTH=>3);,
NEWLINE;

end COMPUTER_SYSTEMPROB-P;

procedure PROPULSION_SYSTEMPROBP(GOAL..FLAG: in out INTEGER) is
RETURN-FLAG: INTEGER := 0;

begin
loop
THEOOD.PROPU)LSIONSYSTEMPROB-P(GOAL -FLAG, RETURNFLAG);
exit when RETURNFLAG = 1;

end loop;,
PUTC"PROPULSIONSYSTE-MPROBP GOAL FLAG
PUT(GOAL FLAG, WIDTH=>3);
NEWLINE;

end PROPULSIONSYSTEMPROBP-

procedure STEERINGSYSTEMPROBP(GOALFLAG: in out INTEGER) is
RETURNFLAG: INT'EGER: 0;

begin
loop
THEOOD.STEERINGSYST-EM_-PROBP(GOAL_FLAG, RETURNFLAG);
exit when RETURNFLAG = 1;

end loop;
PUT(",TE-ERINGSYSTEMPROBP GOAL FLAG=
PUT(COALFLAG, WIDTH=>3);
NEW_ýLINE;

end STEERING_SYSTEM_PROBP;

46

procedure DIVINGSYSTEMPROBP(GOAL-FLAG: in out INTEGER) is
RETURNFLAG: INTEGER := 0;

begin
loop

THE....OD.DIVINGSYST7EMPROBP(GOAL FLAG. RETURN_FLAG);
exit when RETURNFLAG = 1;

end loop;
PUT("DIVINGSYSTEMPROBLEMP GOAL FLAG=
PUT(GOAL.,.FLAG, WIDTM=>3);
NEW -LINE;

end DIVING_SYSTEMPROBP;

procedure BUOYANCY_SYSTEMPROB-P(GOALFLAG: in out INTEGER) is
RETURN-LAG: INTEGER := 0;,

begin
loop

THE_-OOD.BUOYANCYSYSTEM PROB-P(GOALFLAG. RETURN-FLAG):
exitwhen RETURN-FLAG =1;

end loop;
PUTC"BUOYANCYSYSTEMPROBP GOAL FLAG
PUT(GOAL.FLAG, WIDTH=>3);
NEW -LINE;

end BUOYANCYSYSTEMPROBP;

procedure THRUSTERSYSTEMPROBJNGOALFLAG : in out INTEGER) is
RETURNFLAG : INTEGER := 0;,

begin
loop

THE_-OOD.THRUSTER_SYSTEMPROBYP(GOALFLAG. RETURNFLAG):
exit when RETURN-FLAG =1;

end loop;
PUT("THRUSTERSYSTEMPROBP GOAL FLAG =1;
PUT(GOAL-FLAG. WIDTH=>3);
NEW_-LINE;

end THRUSTERSYSTEM-PROB-P;

procedure LEAK..TEST2(GOALFLAG : in out INTEGER) is
RETURNFLAG : INTEGER := 0;

begin
loop
THEQ ODIEAKTEST ..P(GOAL FLAG, RETURNFLAG);
exit when RETURN_FLAG =1;-

end loop;
PUT("LEAK-TEST_-P GOAL FLAG=
PUT(GOAIFLAG, WIDTH=>3);
NEW LINE:

end LEAKTESTYP;

procedure PAYLOAD..PROB-P(GOALFLAG: in out INTEGER) is
RETURNFLAG : INTEGER := 0;,

47

begin
loop
THEOOD.PAYLOADPROBP(GOAL..YLAG, RETURNFLAG),
exit when RETURNFLAG = 1;

end loop;
PUT('PAYLOADPROBP GOAL FLAG
PUT(GOALYFLAG. WIDTH=>3);
NEWLINE;

end PAYLOADPROBY

end TACTICAL__LEVELl;,

48

--Tide :ood~s.a
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for QOD task

package QOD is

task THEQOD is

entry CREATE;
entry READYVEHICLEFOR_,LAUNCH(GJFLAG: out INTEGER),
entry SELECTFIRST_WAYPOINT(QFLAG: out INTEGER);
entry ALERTJSER(GJ- LAG: out INTEGER);
entry INJTRANSITP(GFLAG, R.FLAG: out INTEGER);
entry TRANSIT_DONE_P(GFLAG. RFLAG: out INTEGER).
entry INLSEARCHP(GFLAG, R...FLAG :out INTEGER);
entry SEARCH_DONE_P(GJFLAG. RFLAG: out INTEGER);
entry INTASK-P(GFLAG, RJFLAG: out INTEGER):
entry TASKDONEP(G_1FLAG, R FLAG : out INTEGER);
entry INRETURNP(GJFLAG, RJLAG: out INTEGER).
entry RETURN_DONEP(GFLAG, R_-FLAG: out INTEGER);
entry WA1TJFOR-RECOVERY(G - LAG: out INTEGER);
entry SURFACE(GJFLAG: out INTEGER);
entry DCOSEARCHPAITERN(GJFLAG: out INTEGER);
entry HOMING(GJFLAG: out INTEGER)-,
entry DROP2PACKAGE(GJFLAG: out INTEGER):
entry GETLGPS.YIX(G..FLAG : out INTEGER);
entry GETLNEXTWAYPOINT(GJFLAG: out INTMGER);
entry SEND&SETPOINTSANDMODES(GFLAG: out INTEGER);
entry REACH_WAY)INTPNGJLIAG, R -FLAG: out INTEGER);
entry GPSNEEDED2P(GLAG, RFLAG: out INTEGER);
entry UNKNOWNOBSTACLE2(G_FLAG, RFLAG: out INTEGER);
entry LOCLNEWý_OBSTACLE(G - LAG: out INTEGER);
entry LOITER(GJLIAG: out INTEGER);
entry STARTLOCALREPLANNER(GJFLAG: out INTEGER);
entry STARTý_GLOBALREPLANNER(G..FLAG :out INTEGER);
entry POWER..GONE.Y(G.FLAG, R.FLAG: out IN1TEGER);
entry COMPUTERSYSTEMPROB.P(GJLAG, R..FAG: out INTEGER):
entry PROPULSIONý_SYSTEMPROB-P(GFLAG, RJFLAG: out INJTEGER);
entry STEERING_SYSTEM_PROB_P(GFLAG. RFLAG: out INTEGER);
entry DIVING_SYSTEM - ROB2y(G_.FLAG. RFLAG: out INTEGER);
entry BUOYANCYSYSTEMPROBP(GFLAG, RFLAG: out INTEGER);
entry THRUSTERSYSTEM_PROB..P(G.FLAG. RFLAG: out INTEGER);
entry LEAKJTESTP(GFLAG, R-FLAG : out INTEGER);
entry PAYLOADPROB3y(GFLAG, RJFLAG: out INTEGER);

end THEOOD;

end OOD;

49

--Tidle ood~b~a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler :VADS
--System Unix
--Description Body for OOD task

with TEXT -O1, COMMAND_SENDER. MISSION_.MODEL, WORLDMODEL,
SENSORYRECEIVER.

OOD,_ROUTIER, NAVIGATOR, ENGINEERING, WEAPONS;
use TEXT_10. MISSIONMODEL. WORLDMODEL, SENSORYRECEIVEROO0D_ROUTER,

NAVIGATOR, ENGINEERING, WEAPONS:,

package body OOD is

--Task to handle OOD functions

task body THE_OOD is

GOAL_FLAG_I BOOLEAN :=FALSE, -Flags for lower level objects
RETURNFLAGI : BOOLEAN: FALSE;
OOD_X: FLOAT;
OODY FLOAT;
OOD_DEPTH: FLOAT;
OOD HEADING: FLOAT;
QODLSPEED: FLOAT;
OODMODE: IN-TEGER;

begin
loop
--Flags for lower level objects are checked for each command or predicate
-query and then the result is sent back to the Strategic level
select
--Create tactical level objects
accept CREATE;

PUT..LINECVCreating OOD');
THEMISSION_MODEL.CREATE;
THEWORLDMODEL.CREATE;
THESENSORYRtECEIVER.CRE ATE;,
THEOODROUTER.CREATE;
THJE_NAVIGATOR.CREATE;
THEENGIN'EERLNG.CREATE;
THEWEAPONS.CREATE;

or
accept READYVEFCLEJORLAUNCH(G-RFAG out INTEGER) do
THE_ýWORLDMODEL.INITALIZE(GOALFLAGJI):
if (GOALFLAGJl = TRUE) then
THE-MISS ION...MODEL.INMTALIZE(GOAL FLAG 1);

50

if (GOALFLAG_1 = TRUE) then
GFLAG := 1;
GOAL-FLAG_1: FALSE;

else
GYFLAG := 0;

end if,
else
G.YLAG :=0,

end if,
end READY_VEHICLEFORLAUNCH;

or
accept SELECT_-FIRST_-WAYPOINT(GJFLAG: out INTEGER) do
THE_-NAVIGATOR.SELECTFIRSTý_WAYPOINT(GOALFLAG_1);
if (GOALFLAG_I = TRUE) then
G_FLAG: 1;
GOALFLAG_1I: FALSE;

else
GFLAG := 0:

end if;,
end SELECTFIRSTWAYPOINT:

or
accept ALERT-USER(GFLAG :out INTEGER) do

PUTLINEVFailure detected during initialization.")-.
GFLAG := I-,

end ALERTUSER;
or
accept INJTRANSIL-P(GJFLAG. RFLAG: out INTEGER) do
THEMISSIONMODEL.INTRANSITLP(GOALFLAG_1, RETURN_FLAG_I);
if (GOAL-FLAGI = TRUE) then
GFLAG := 1;
GOALFLAGI: FALSE;

else
GFLAG := 0;,

end if;,
if (RETURN_FLAG_1 = TRUE) then
RFLAG: 1;
RETURN_FLAG_I := FALSE;

else
R..FLAG: 0;

end if;,
end IN_TRANSIT_P;

or
accept TRANSITý_DONEP((QFLAG, R-FLAG: out INEGER) do
THEMISSION_ýMODEL.TRANSIT_-DONEP(GOAL FLAG_I, RETURNFLAG 1);
if (GOAL-FLAG_1 = TRUE) then
G-LAG: 1;
GOAL-FLAG_1 := FALSE:

else
GFLAG := 0-

end if;,
if (RETURN_FLAG_1 = TRUE) then

51

RJFLAG :- 1:.
RETURN-FLAG- :- FALSE;

else
RFLAG: 0;

end if;,
end TRANS rr...DONELP;

or
accept IN-SEARCHYP(CLFLAG, R-JLAG: out INTEGER) do

THEMINSSIONvIODEL.IN_SEARCHP(GOALYý_LAGJ., RETURNFLAG-1);
if (GOALJFLAG_I = TRUE) then

GFLAG: 1;
GOALFLAG_1 := FALSE:

else
GFLAG: Q0

end if;,
if (RETURNFLAG_ I = TRUE) then
RFLAG: 1.
RETURN-JLAGJ1: FALSE;

else
RIFLAG: 0;,

end if;,
end INSEARCHP;

or
accept SEARCH_DONE_(GFLAG. RFLAG: out INTEMGER) do

THEMISSIONMODEL.SEARCH..DONEY(GOALFLAG_I. RETURNJFLAG-1);
if (GOAL.YLAG_1 = TRUE) then
GFLAG: I-,
GOALFLAG_1 := FALSE;

else
GFLAG :=O0;

end if;,
if (RETURNY.LAG_1 = TRUE) then
R-FLAG: 1;
RETURNFLAG_1: FALSE;

else
RFLAG: 0:

end if;,
end SEARCHDONE...P;

or
accept IN_TASK_P(GFLAG, RFLAG: out INTEGER) do
THEMIlSSIONMODEL.INJTASK-P(GOALFLAGI, RETURN_FLAG-1);
if (GOALYLAG_ I TRUE) then
GFLAG:= 1;
GOALFLAG_1 := FALSE;

else
GFLAG := 0-

end if;,
if (RETUJRN_FLAGJ = TRUE) then

R.YLAG := 1;
RETUTRNFLAGJ : FALSE;

else

52

RFLAG := 0;
end if-,

end IN_TASKY:
or

accept TASK..DONE,_(G..FLAG. RFLAG :out INTEGER) do
THEMISSIONMODEL.TASKJ)ONE!P(GOALFLAGý_1, RETURN.NFLAG_1);,
if (GOALLAGJl TRUE) then

G-KYAG: 1;
GOALFLAG_1 := FALSE;

else
oFLAG: =0,,

end if-,
if (RETURN_FLAG_1I = TRUE) then
RFLAG: 1;
RETURNFLAG_1: FALSE,

else
RFLAG: =0;

end if,
end TASK-DONE..P;

or
accept IN...RETURNP(GFLAG, R_FLAG: out MINGER) do

THEMINSSIONMODEL.INRETURN-P(GOALFLAG_1, RETURN.FLAG-J):
if (GOAL..FLAGI = TRUE) then
GFLAG := I-,
GOALFLAG_1 I:= FALSE;

else
GFLAG := 0;,

end if.
if (RETURN_FLAG_1 = TRUE) then
RFLAG := 1;
RETURNFLAG_1I: FALSE:

else
RFLAG: 0:,

end if-,
end INRETURNP:,

or
accept RETURNDONE -P(G - LAG. RFLAG: out INTEGER) do

THEMINSSIONMODEL.RETURNDONEP(GOAL FLAG_1, RETURNFLAGJ1);
if (GOALJFLAG_1 = TRUE) then
GFLAG: 1;
GOALFLAGI : FALSE;

else
G_ýFLAG := 0.

end if.
if (RETURNFLAG_1 = TRUE) then
R-JLAG: 1;
RETURN.FLAG-1 := FALSE:

else
R.YLAG: 0;

end if-,
end RETURNDONEP:

53

or
accept WAIT...FOR_.RECOVERY(GLYLAG: out PNTEGER) do

TENAVIGATO)R.WAIT...FOR-RECOVERY(GOAL-FLAGJI):
if (GOALFLAGJl = TRUE) then
G-JLAG :- L;
GOAL-FLAG- := FALSE;

else
GFLAG:= 0-

end if-,
end WAIT_FOR_RECOVERY;

or
accept SURFACE(GFLAG :out INTEGER) do
THENAVIGATOR.SURFACE(GOAL...FAGJ1);
if (GOALFLAGI = TRUE) then
0_FLAG: 1;
GOALFLAG_1 := FALSE;

else
GFLAG := 0;,

end if-,
end SURFACE;

or
accept DO_SEARCHPAflERN(G-FLAG: out DNTGER) do

THE_-NAVIGATOR.DO_-SEARCHPATrERN(GOALyLAGJ);
if (GOAL_-FLAGI = TRUE) then
GFLAG:= 1;
GOALFLAG_1 :=FALSE.

else
GFLAG := 0

end if;,
end DO SEARCHPA=rRN:.

or
accept HOMING(GYLAG :out INTEGER) do

THENAVIGATOR.DO_-HOMlNG(GOAL-FLAGJI):
if (GOALFLAG_1 = TRUE) then
GFLAG:=1L;
GOAL_FLAG_1= FALSE;

else
0_FLAG :=0:

end if;,
end HOMING;

or
accept DROP_-PACKAGE(G-FLAG: out INTEGER) do

THIE_.WEAPONS.DROP_-PACKAGE(GOALFLAG_1);
if (GOAL..FLAG-1 = TRUE) then

0_FLAG := 1:.
GOAL-.FLAG-J: FALSE:

else
GFLAG :=0-,

end if;,
end DROP!_ACKAGE;

or

54

accept GET...GPSYIX(G..LAG: out RNTGER) do
THE_-NAVIGATOR.GEL-GPSJFIX(GOALYFLAGJ);
if (GOALJFLAG_1 = TRUE) then
GFLAG: 1;
GOAL-RLAG_1 := FALSE;

else
GFLAG :=0,

end if-,
end GETGPSMI;

or
accept GETAEXTWAYPOINT(GJFLAG: out RNTGER) do
TIENAVIGATOR.GET_-NEXT_-WAYPOINT(GOALFLAGJ);
if (GOALJLAG_ = TRUE) then
GFLAG := 1;
GOALFLAG_1: FALSE:

else
GFLAG :=O0;

end if;,
end GET_.NEXT_WAYPOINT;

or
accept SEND&SETPOINTSANDMODES(GJFLAG: out INTEGER) do

select
THENAVIGATOR.SEND_ýSETPOINT_AND-MODES(GOALFLAG-I):
or

delay 1.0:
end select;
if (GOAL-FLAG_1 = TRUE) then
GFLAG: =1;
GOAL-FLAG_ I: FALSE;

else
GFLAG := 0-

end if;,
end SENDSETPOINTS_AND_MODES;

or
accept REACHWAYPOINTP(G.FLAG. R.FLAG out INTEGER) do

THE_-NAVIGATOR.REACHWAYPOINL1ýP(GOAL...FAG_1. RETURNFLAG_1);
if (GOALYLAG_1 = TRUE) then

G-YLAG: 1;
GOAL-FLAG_1 :=FALSE;

else
G.LAG: =0;

end if;,
if (RETURNFLAG_1 = TRUE) then
R...FLAG := 1;,
RETUTRNFLAG_1: FALSE;

else
R..FLAG := 0;

end if;.
end REACHWAYPOINLýP;

or
accept GPS-NEEDEDýP(GJFLAG, RFLAG: out INTEGER) do

55

THENAVIGATOR.GPS_-NEEDED..P(GOALFLAG_1, RETURNFLAG_1);
if (GOALFLAG_1 = TRUE) then
G-FLAG: 1;
GOALJFLAG_I := FALSE,

else
GJLAG:0-

end if;,
if (RETURN-FLAG_1 =TRUE) then
RFLAG := 1;
RETUJRNFLAG_1 :- FALSE;

else
lt.FLAG := 0;,

end if-,
end GPSNEEDED.P:.

or
accept UNKNOWNOBSTACLE-P(GFLAG, R.FLAG: out INTGER) do

THEE_NAVIGATOR.UNKNOWNOBSTACLEJN(GOALFLAG_1. RETURNFLAG_1);
if (GOALFLAGI = TRUE) then
GJLAG: 1;
GOALýFLAG_1= FALSE;

else
G_.FLAG:=0

end if;
if (RETURNFLAG_1 = TRUE) then
RFL.AG := 1:
RETURNFLAGI := FALSE,

eLse
R.FLAG :=0;

end if-,
end UNKNOWNOBSTACLEP;

or
accept LOGNEWOBSTACLE(GFLAG out INTEGER) do

THENAVIGATOR.LOG.NEW-OBSTACLE(GOALJFLAG_1);
if (GOALFLAG_1 = TRUE) then
G.YLAG: 1;
GOAL_-FLAG_1 := FALSE;

else
G-FLAG: 0;

end if;,
end LO(LNEW_-OBSTACLE;

or
accept LO1TER(GJLAG: out INTEGER) do

GFLAG:=l1,
end LOITER;

or
accept STARTLOCALREPLANNER(GFLAG: out INTEGER) do
THENAVIGATOR.START_-LOCAL,ýREPLANNER(GOAL_FLAG_1);
if (GOAL_-FLAGI = TRUE) then
G-.YLAG := 1;
GOAL-JLAGI := FALSE;

else

56

GJYLAG := 0,
end if;,

end START-.LOCALREPLANNER;
or

accept START_-GLOBAL_REPLANNER(Q.FLAG :out RNTGER) do
TM-NAVIGATOR.START GLOBAL.REPLANNER(GOAL_FLAG_1);
if (GOALJYLAG-1 = TRUE) then
G-LAG := 1.
GOALFLAG_1 := FALSE;

else
G-KFAG:=0

end if;
end STARTGLOBAL.REPLANNER:

or
accept POWERGONEP(G FLAG. RFLAG: out I[NTEGER) do

THEENGINEERING.POWERJ3GONEYP(GOALFLAGI. RETURN_FLAGI);
if (GOALFLAG_ = TRUE) then
GJLAG: 1;
GOAL-LAG- := FALSE:

else
GjLAG: 0;

end if:,
if (RETURN-JLAG_1 = TRUE) then

R-JLAG: 1;
RETURNFLAGJI: FALSE,

else
RFLAG := 0.

end if;
end POWERGONEP:

or
accept COMPUTERSYSTEM_PROBP(GFLAG. RFLAG: out INTEGER) do
THEENGINEERING.COMPUTERSYSTEMPROB P(GOAL_-FLAGJ1, RETURNFAG_1);
if (GOAL ...FLAG_1 = TRUE) then
GFLAG: 1.
GOAL_-FLAG 1 := FALSE;

else
GFLAG := 0;

end if;,
if (RETIJRNJFLAG_1 = TRUE) then
RFLAG: 1,
RETURN-JLAGr-: FALSE.

else
RFLAG: 0;

end if,
end COMPUTERSYSTEMPROB_.-;

or
accept PROPUJLSIONSYSTEMPROBJNGJ-LAG, RFLAG: out INTGER) do
THE...ENGINEERhINGJ'ROPULSIONSYSTEMPROBP(GOAL_-FLAGJ_, RETURNFLAG_1);
if (GOAL-FLAG_I = TRUE) then
GJLAG: 1;

57

GOAL-FLAG_1: FALSE;
else

G..YLAG:=0
end if-,
if (RETUJRN_FLAG1 = T'RUE) then
R-YLAG: 1;
RETURN..YLAG-I :=FALSE:

else
RFLAG: 0;

end if-,
end PROPULSION_.SYSTEMPROB_.:

or
accept STEERING_SYSTEM_PROBP(GFLAG, RFLAG out INTEGER) do
THE.ENGN-EERING.STEERINGSYSTEMPROB_P(GOALFLAG-1. RETUJRNFLAGI)
if (GOAL_.FLAG_1 = TRUE) then

(GFLAG := 1;
GOALFLAG_1 :=FALSE,

else
GFLAG: =0;

end if;,
if (RETURNJFLAG I = TRUE) then
RFLAG: 1;
RETURNFLAG_1 I:= FALSE;

else
RFLAG := 0;

end if;,
end STEERING_SYSTEMPROB.P;

or
accept DIVING_.SYSTEM_-PROBP(G...FLAG. R.FLAG: out INTEGER) do

THEENGINEERING.DIVINGSYSTEMPROBJN(GOAL_FLAG_I, RETURN_FLAGI):
if (GOALFLAG_1 = TRUE) then
GFLAG: 1;
GOALFLAG_1: FALSE;

else
(3FLAG := 0-

end if;,
if (RETURNFLAG-1 = TRUE) then
RFLAG: 1;,
RETURNFLAGI :=FALSE;

else
RFLAG := 0;

end if;,
end DIVING_SYSTEM_PROBP;

or
accept BUOYANCY_SYSTEMPROBP(G..FLAG, R..FLAG: out INTEGER) do

THEENGINEERING.BUOYANCY__SYSTEMYPROBP(GOAL-FLAGJ, RETURN-JLAG-J);
if (GOALFLAG_1 = TRUE) then
GFLAG: 1;,
GOALFLAGI := FALSE;

else
(3FLAG :=0;

58

end if-,
if (RETURN..YLAG- I. = TRUE) then
RFLAG: 1;
RETUJRN_FLAGI: FALSE:

else
RFLAG: 0;

end if;
end BUOYANCY-SYSTEMPROBP;

or
accept THRUSTER_SYSTEM_-PROB_P(GFLAG. R_FLAG: out DITEGER) do

THE_-ENGINEERING.THRUSTERSYSTEMPROBP(GOALFLAG_1, RE11JRN.YLAGJ);
if (GOALFLAG_1 = TRUE) then

G_ýFLAG: 1;
GOALFLAG_ I: FALSE;

else
GFLAG :=0

end if;,
if (RETURN FLAG_1 = TRUE) then
RFLAG: 1;
RETURNFLAG_1 :=FALSE;

else
RFLAG: 0;

end if;
end THRUSTERSYSTEMPROBP;

or
accept LEAK&TESTP(GFLAG, R -FLAG: out IN4TEGER) do
THE_-ENGINJEERING.LEAKTESTP(GOAL FLAG_I, RETURNFLAG-j):
if (GOALFLAG_I = TRUE) then
GFLAG: 1;
GOALFLAG_1: FALSE;

else
GFLAG: =0;

end if;,
if (RETURNFLAG_1I = TRUE) then

RFLAG: 1;
RE-TURNFLAG_1 := FALSE;

else
RFLAG := 0;

end if;
end LEAKTESTP-

or
accept PAYLOADPROBP(GJLAG. RFLAG: out INT1EGER) do

THE_-ENGINEERING.PAYLOAD_-PROB.Y(GOAL._FLAG_1. RBTURNJFLAG_1);
if (GOAL_FLAG_1 = TRUE) then
GFLAG:= 1;
GOALFLAGJI: FALSE;

else
GFLAG := 0.

end if;,
if (RETURN-FLAG_1 = TRUE) then
RFLAG := 1;,

59

RETURN_FLAGJI:= FALSE;
else
RFLAG:= 0;

end if:
end PAYLOADPROBP;

end select;
end loop;

end THEOOD;

end OOD,

60

--Tide oodj...s.a (CLIPS-Ada Simulator Version)
--Author :F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler :VADS
--System Unix
--Description Specification for QOD Router task

package OOD-ROUflER is

task TI{E,00D_ROUTER is
entry CREATE,
entry TAXBýNAVCOMMANDS(WAYPOINT-X: in FLOAT:

WAYPOINTY in FLOAT;
NAVHEADING: in FLOAT:
NAV-SPEED: in FLOAT:
NAy DEPTH: in FLOAT:
NAV_MODE: in IN'TEGER);

entry TAKE.-.GU1DANCE...COMMANDS(NAV HEADING: in FLOAT:
NAV MODE: in INTEGER):

end THE..OODROUTER:

end OODROUTER:

61

--Title ood-r-b.a (CLIPS-Ada Simulator Version)
--Author P.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler :VADS
--System Unix
--Description :Body for OOD Router task

with TEXT JO, MISSION...MODEL, COMMANDý_SENDER;
use TEXT-1O;

package body OOD...ROUTER is

--Task to handle routing of requests to OOD, required to allow time-consuming
--tasks to continue (search. homing, replanning)

task body THE_OOD_ROtT`ER is
OOD_X: FLOAT;
OODY FLOAT:
QOD HEADING: FLOAT:
OODSPEED: FLOAT:
QODDEPTH: FLOAT;
OODMODE : INTEGER;

begin
accept CREATE;
PUTý_LINEC-Creating OOD ROUTER**):.
loop
select
--Get Navigator commands to send to Command Sender
accept TAKE-NAVCOMM4ANDS(WAYPOINTX : in FLOAT:

WAYPOINIT Y: in FLOAT,
NAV_ýHEADING : in FLOAT;
NAVSPEED: in FLOAT:
NAVDEPTH : in FLOAT;
NAV.MODE : in INTEGER) do

OODX := WAYPOINT_X:
OOD_Y := WAYPOINT_Y;
OODHEADING := NAVHEADING;
QOD-SPEED := NAV_-SPEED;
OODDEPTH := NAVDEPTH;
OODMODE := NAV_MODE;

end TAKENAV COMM4ANDS;
COMMAND-_SENDER.SEND(OOD..X, OODY.OODHEADING. OODSPEED,

QODDEPTH. OODMODE);
or

accept TAKEGUJIDANCECOMMANDS(NAV-HEADING : in FLOAT;
NAV_MODE : in INTEGER) do

OOD_HEADING := NAV_HEADING;
OODMODE := NAVMODE:

62

end TAKEGUIDANCECOMMANDS;
COMMANDSENDERSEND(OOD_-X. OOD-Y 00D.JIEADING. QODSPEED.

OOD-.DEPTH OOD..MODE);
end select;

end loop;
end THE-OOD_.ROUTER;.

end QODROUTER;

63

--Tide navb.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for Navigator task

package NAVIGATOR is

task THE_NAVIGATOR is
entry CREATE;
entry SELECTFIRST-WAYPOINT(G_FLAG_I: out BOOLEAN);
entry WArTJFORRECOVERY(GJFLAG_I: out BOOLEAN):
entry SURFACE(GFLAG 1 : out BOOLEAN);
entry DO_SEARCHPATTERN(GFLAG_1: out BOOLEAN),
entry DOHOMING(GFLAG_I : out BOOLEAN):
entry GETGPS_FIX(G FLAG_ I: out BOOLEAN);
entry GPSNEEDED_P(GFLAG_1, RFLAGI : out BOOLEAN):
entry GETNEXT WAYPOINT(G FLAGI : out BOOLEAN);
entry REACH.WAYPOINTLP(GFLAG_1. RFLAGIJ: out BOOLEAN):
entry SEND_SETPOINTSANDMODES(GFLAG_I : out BOOLEAN):
entry UNKNOWNOBSTACLEP(GFLAG_ 1. RFLAG_1 : out BOOLEAN);
entry LOG_NEWOBSTACLE(GFLAG_1 : out BOOLEAN):
entry START_LOCAL_REPLANNER(GJFLAGJ1 : out BOOLEAN):
entry STARTGLOBAL_REPLANNER(GFLAGJ1: out BOOLEAN):

end THENAVIGATOR:

end NAVIGATOR:

64

--Tide : navb.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--Systemr Unix
--Description Body for Navigator task

with TEXTIO, MATH. MISSIONMODEL. SENSORY_RECEIVER. OODROUTER.
NAVIGATORROUTER, GUIDANCE. GPSCONTROL, SONARCONTROL.

NISSION-REPLANNER,
use TEXT 10, MATH, MISSIONMODEL, SENSORYRECEIVER. OODROUTER.

NAVIGATORROUTER. GUIDANCE. GPSCONTROL, SONARCONTROL,
MISSIONREPLANNERk

package body NAVIGATOR is

--Task to handle navigation functions

task body THE NAVIGATOR is

GOALFLAG_2 : BOOLEAN := FALSE; --Flags for lower level objects
RETURNFLAG_2: BOOLEAN:= FALSE:
STARTED : BOOLEAN := FALSE: --Flag to start comm protocol
REPEATED: BOOLEAN := FALSE: --Flag to continue comm protocol
NAV_X: FLOAT.
NAV_Y : FLOAT:
NAVDEPTH: FLOAT:
NAVHEADING : FLOAT:
NAVSPEED : FLOAT:
NAVMODE : INTEGER;
NAV_BEARING : FLOAT:
NAVRANGE : FLOAT;
WAYPOINT_X : FLOAT;
WAYPOINT_Y : FLOAT:
WAYPOINTDEPTH : FLOAT:
EPSILON : constant FLOAT := 20.0: --Tolerance for achieving waypoint
SURFACELIMIT: constant FLOAT := 5.0; --Tolerance for Surface condition

begin
--Create Navigator's subobjects
accept CREATE;
PUT_LINE("Creating NAVIGATOR"):
THENAVIGATORROUTER.CREATE:
THEGUIDANCE.CREATE:
THEGPSCONTROL.CREATE;
THE_MISSION_REPLANNER.CREATE;
THESONARCONTROL.CRE ATE:
--Receive initial state and first waypoint

65

accept SELECTFIRST_.WAYPOINT(GFLAGJl out BOOLEAN) do
THEWSSION.MODEL.GIVE-FtST..WAYPOINT(NAV-X, NAV-Y. NAV..PEPTH.

NAVMODE.
NAV HEADING.NAV-SPEED. WAYPOINT_X.
WAYPOINTLY, WAYPOUINLDEPTH);

G..YLAGJ :z TRUE;
end SELECTFIRST..W AYPOINT;
loop

select
accept WAITF0RRECOVERY(GFLAG_1I: out BOOLEAN) do

GJýLAG_I := TRUE;
end WAITLFOR...RECO VERY;
--Loop under Tactical level control until signaled for mission
--download
loop
--Delay to comply with simulator Tactical-Execution comm protocol
--For every set of data received a set of commands must be sent
delay 0.2-.
THE_.SENSORY_RECEIVER.RECEIVE(NAVX. NAVY. NAVDEPTH. NAVHEADING.

NAy BEARING. NAVRANGE):
WAYPOINTDEPTH: 0.0;
NAV SPEED: 0.0;
THE_OOD_..ROUTER.TAKE..NAV.2OiMMANS (WAYPOINLrX. WAYPOINT-Y,

NAV_HEADING.
NAVSPEED. WAYPOINT DEPT. NAV..MODE):

end loop,
or

accept SURFACE(GFLAG_ I: out BOOLEAN) do
loop
--Simulator protocol delay
delay 0.2:,
THE_ýSENSORYJJECEIVER.RECE1VwE(NAV_X. NAV_Y. NAV..DEPTH. NAVHEADING.

NAVBEARJNG. NAVR1ANGE):
exit when NAV-.DEPTH < SURFACELIMIT:
WAYPOINT_DEPT*H: 0.0:
THEOODRO~rER.TAKE..NAVCOMMN~lDS(WAYPOINT_X. WAYPOINTY,

NAV_-HEADING. NAV_.SPEED.
WAYPOINTDEPTH. NAV..MODE):

end loop;
G-FLAG-1: TRUE-,

end SURFACE;
or
accept DOSEARCH.PATTERN(GFlAG_1 : out BOOLEAN) do

THE...SONAR...CONTROL.DCLSEARCHPATr-ERN(GOALJFLAG...2, NAV_{EADING);
if (GOALJLAG..2 = TRUE) then
G_FLAGI := TRUE;
GOALFLAG_2 := FALSE:

else
GJFLAGJl := FALSE.

end if:
end DO_SEARCHPAflTERN:

66

or

accept DO.HOOMING(G.YLAGJl : out BOOLE AN) do
THE...GUIDANCE.DO&HOMING(GOAL.YLAG...2).

if (GOAL JLAG_.2 - TRUE) then
GJLAG_ :- TRUE;
GOALYLAG....2 FALSE:

else
GJFLAG_ I:= FALSE;

end if:
end DO..HOMING.

or

accept GETGP&FIX(GJLAGJl out BOOLEAN) do
TMGPS-CONTROL.GETLGPSjIX(GOALFLAG_2):.
if (GOALJFLAQ..2 = TRUE) then
GFLAGI : TRUE:
GOAL_FLAG.2 :- FALSE:

else
GFLAG_1: FALSE:

end if:
end GETGPS_FIX.

or
accept GPSNEEDED..P(GFLAG_1. R-FLAG-1 out BOOLEAN) do
GFLAGI := FALSE:
R -FLAG-1: TRUE:

end GPS_NEEDED_P:.
or

accept GETLNEXTWAYPOINT(G-YLAG_1 : out BOOLEAN) do
THEMISSIONMODEL.GIVENEXTWAYPOINT(WAYPOINTX.WAYPOINT-..

WAYPOINT DEPTH. NAVSPEED.
NAV-MODE):

GFLAG_1 =TRUE:
end GET.J4EXT..WAYPOINT.

or
accept REACH_WAYPOINT_P(G_FLAGI. R_FLAG_1 : out BOOLEAN) do

if SQRT((WAYPOrINLX - NAV_X)**2 + (WAYPOLNT..Y - NAVY)**2)
< EPSILON then --Reached wa)oint

GFLAG_1:=TRUE:
PUTLINE(C*****At waypoint, coming to new heading*****-):

else
G-.FLAG- := FALSE:

end if-.
R_-FLAGI := TRUE;

end REACHWAYPOR4NLP
--Do guidance in the background
if not REPEATED then --Update navigation
if STARTED then

--Get current status values from Sensory Receiver
THESENSORYRECEIVER.RECEIVE(NAVX. NAVY, NAV.DEP'rH. NAV_{EADING,

NAV BEARING. NAV RANGE);
end if:
--Send for new commands from Guidance

67

TGUTIDANCE.GET-.GUTIDANCE-COMMANDS(NAV..X. NAVY. NAV..DEJ'TH.
NAV-HEADINGNAV.SPEED, WAYPODNT-X.

WAYPOINT-.Y. WAYPONT-DEPTH);
STARTED a TRUE;
REPEATED:= TRUE;

end if-,
or
accept SEND....SETPOINTS..AND..MODES(G_.FAGI out BOOLE AN) do
T'EOODROUrR.TAXNANV-COMMANDS(WAYPOINT-X, WAYPOINT-Y.

NAV.JIEADING. NAVSPEED.
NAVDEPTH. NAVMODE);

G.YLAGI :=TRUIE;
REPEATED :- FALSE;

end SENDSETPOINTSANDMODES:
or

accept UNKNOWN_.OBSTACLEP(G. LAGj. RJFLAGJ : out BOOLEAN) do
THE_-SONAR..CONTROL.UNKNOW&NOBSTACLE-P(GOALFLAG-2. RETUTRNFLAG-.2);
if (GOALFLAG_2 = TRUE) then
GFLAG- I:= TRUE:
GOALFLAG_ý2:= FALSE:

else
G..FLAG_1I: FALSE;

end if;
if (RETURNFLAG_2 = TRUE) then
R-FLAG-1 := TRUE;
RETURN-JLAG_2 := FALSE:

else
RFLAG_1 := FALSE;

end if:
end UNKNOWNOBSTACLEP;.

or
accept LOGNEWOBSTACLE(G.YLAG- I out BOOLEAN) do

THE _SONARCONTROL.LOG_NEWOBSTACLE(GOAL..YLAG_2);
if (GOALFLAG_2 = TRUE) then
G-YLAG I := TRUE;
GOAL_ýFLAG_2 := FALSE:

else
GFLAG- := FALSE,

end if:
end LOGNEW OBSTACLE;

or
accept STARTLOCALREPLANNER(GFLAG-1 : out BOOLEAN) do
TEMISSIONREPLANNER.STARTLOCAL.REPLANNER;
THEGUI7DANCE.LOITER(NAV.X. NAVY. NAVDEPTH. NAVJIEADING, NAV..SPEED,

NAV_.MODE).
G-.FLAGI := TRUE;

end START-.LOCAL-REPLANNER;
or

accept STARLýGLOBAL_RE-PLANNER(GFLAG_1: out BOOLEAN) do
THE MISS ION REPLANNER.START -GLOB AL REPLANNER;
THE...GUIDANCE.LOITER(NAV..X. NAVY, NAV-DEPTH, NAVHEADING, NAV-SPEED,

68

NAVMODE);
G_FLAG_I :- TRUE:

end STARTGLOBALREPLANNER:
end select:

end loop;
end THENAVIGATOR:

end NAVIGATOR;

69

--Tide navjs.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised : 26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for Navigator Router task

package NAVIGATOR-ROUTER is

task THENAVIGATORROUTER is

entry CREATE,
entry TAKEGUIDANCE..HEADING(GUIDANCE~HEADING: in FLOAT;

GUIDANCEMODE: in INTEGER)Y
entry TAKELOITERCOMMANDS(GUIDANCEX: in FLOAT:

GUIDANCE_Y: in FLOAT:
GUIDANCEHEADING: in FLOAT:
GUIDANCESPEED: in FLOAT:
GUIDANCEDEPTH : in FLOAT:
GUIDANCEMODE: in INTEGER:
LOITERGUIDANCE_DONE : out BOOLEAN):

entry REPLAN-DONE;
end THE-NAVIGATORROUTER;

end NAVIGATOR-ROUTER,

70

--Tidle nayj_rba (CLIPS-Ada Simulator Version)
--Author :F.P. Thornton Jr.
--Revised :17 Aug 93
--Compiler :VADS
--system :Unix
--Description Body for Navigator Router task

with TEXT_10, OODROUIER.
use TEXTJO0, OOD..ROUTER:,

package body NAVIGATORROUTER is

--Task to handle routing of requests through Navigator

task body THE..NA VIGATORROUTER is

NAVX: FLOAT;
NAV..Y FLOAT:
NAVDEPTH: FLOAT,
NAVSPEED: FLOAT,
NAVHEADING : FLOAT:
NAVMODE: INTEGER:
NAV-REPLAN-DONE: BOOLEAN := FALSE: --Flag to signal replan done

begin
accept CREATE:
PLJLLINE('Creating NAVIGATOR ROUTER-):
loop

select
accept TAKE-GUIDANCEHIEADINTG(GUIDANCEjiEADING : in FLOAT:

GUIDANCE-MODE: in INTEGER) do
NAVHEADING := GUIDANCE-HEADING:
NAV_-MODE := GUIDANCEMODE:

end TAKEGUIDANCE-HEADING:
--In Search mode so take search commands immediately
THEQODROUTER.TAKE.._GUIDANCE-COMIMANrDS(NAVHEADING. NAV_.MODE);

or
accept TAKE-LOITERCOMMAANDS(GUIDANCEX : in FLOAT:

GU`IDANCE2(: in FLOAT:
GUIDANCE-HEADING: in FLOAT:
GUIDANCESPEED: in FLOAT:
GUIDANCEDEPTH: in FLOAT;
GUIDANCE-.MODE: in INTEGER:
LOITERGUIDANCE..DONE : out BOOLEAN) do

NAY_-X := GUIDANCE_.X;
NAV-Y:= GU`IDANCEY...
NAY_HEADING := GUIDANCEj1EADING:
NAVSPEED := GUJIDANCEý_SPEED:

71

NAV-DEP*H :u GUIDANCE...DEPTH;
NAVMODE :u GUTIDANCEMODE;
LOrMR.GUIDANCEDONE :w NAV.REPLAN_DONE.

end TAKE-LOITER_COMMANDS:.
THEOODROUTER.TAKENAV.COMMANDS(NAVX, NAVY. NAV -HEADING,

NAV..SPEED. NAV-DEPTH. NAV-.MODE):
or

accept R.EPLAN_)ONE.
NAV_-REPLAN..DONE: TRUE;

end select;
end loop-.

end THENAVIGATOR RQUTER,

end NAVIGATORROUTER;

72

--Title engin-s.a
--Author F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for Engineering task

package ENGINEERING is

task THE-ENGINEERING is
entry CREATE:
entry POWERGONE.P(G.FLAG_I. RFLAG_1 : out BOOLEAN):
entry COMPUTERSYSTEM-PROB_P(GJFLAG_I. RFLAG_1: out BOOLEAN):
entry PROPULSIONSYSTEMPROBP(G.FLAG-1. RJFLAG_1: out BOOLEAN):
entry STEERINGSYSTEMPROB_P(GJFLAG 1. R_FLAG_I : out BOOLEAN).
entry DIVINGSYSTEM-PROB_P(G_FLAG_1. RFLAGIJ: out BOOLEAN);
entry BUOYANCYSYSTEM PROBP(G_FLAG_1. RFLAG_1: out BOOLEAN):
entry THRUSTERSYSTEMPROB-P(GFLAG-1. RFLAG_1: out BOOLEAN):
entry LEAK-TESTP(G-FLAG-1. R.FLAG_1 : out BOOLEAN):
entry PAYLOADPROBP(G_FLAGI. RFLAG_I : out BOOLEAN):

end THEENGINEERING;

enu ENGINEERING:

73

--Tide enginb.a
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Body for Engineering task

with TEXT_10. MATH. CALENDAR:
use TEXT_10, MATH, CALENDAR:

package body ENGINEERING is

--Task to handle engineering functions such as monitoring onboard systems

task body THEENGINEERING is

THRUSTER-LEVEL: FLOAT:= 100.0.
THRUSTERMIN: FLOAT := 80.0:
THRUSTERLOSS: FLOAT:= 1.0.

begin
accept CREATE:
PUTLINE("Creating ENGINEERING"):
loop

select
accept POWERGONE-P(G-FLAG_I. RFLAG_I . out BOOLEAN) do

G_FLAG_I := FALSE:
R FLAG_1 := TRUE:

end POWERGONE P:
or
accept COMPUTERSYSTEM.PROB P(GFLAG_1. RFLAG_1 : out BOOLEAN) do
GFLAG_1 := FALSE:
R FLAG_I := TRUE:

end COMPUTERSYSTEM_PROBP:
or

accept PROPULSIONSYSTEM'PROBP(G_FLAG_I, R_FLAG_ 1: out BOOLEAN) do
G_FLAGI := FALSE;
R_FLAG I TRUE:

end PROPULSIONSYSTEMPROB_P:
or

accept STEERINGSYSTEMPROBP(G-FLAG_1. RFLAG_I: out BOOLEAN) do
GFLAG_1 :=FALSE:
RFLAG_I := TRUE:

end S.'EERINGSYSTEM_PROB_P:
or

accept DIVINGSYSTEMPROBP(G.FLAGI. RFLAG_1 : out BOOLEAN) do
GFLAG_1 :-FALSE;
R FLAGI :=TRUE:

74

end DIVINGSYSTEMPROB_P;
or

accept BUOYANCYSYSTEM-PROB-P(G_FLAG_1. RJFLAG_1 : out BOOLEAN) do

G FLAGI: FALSE:
R_FLAG_1 TRUE:

end BUOYANCYSYSTEMPROB_P;
or

accept THRUSTERSYSTEM-PROBP(GFLAGI. RFLAG_ : out BOOLEAN) do

if THRUSTER-LEVEL > THRUSTERMIN then
THRUSTERLEVEL := THRUSTERLEVEL - THRUSTERLOSS:
G -FLAG_I := FALSE:

else
GFLAG_ :=TRUE;

end if;
R_FLAG_1 := TRUE;

end THRUSTERSYSTEMPROB_P;
or
accept LEAKTEST P(GFLAGI, RFLAG_I out BOOLEAN) do

G_FLAG_I :=FALSE;
R_FLAGI TRUE:

end LEAKTESTP;
or
accept PAYLOADPROBP(G_FLAG_I, R_FLAG_ : out BOOLEAN) do

G_FLAGI:= FALSE:
R FLAG_I := TRUE:

end PAYLOADPROB_P:
end select;

end loop:
end THE_ENGINEERING:

end ENGINEERING:

"75

--Title weapons.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description : Specification for Weapons task

package WEAPONS is

task THEWEAPONS is
entry CREATE:
entry DROPPACKAGE(GFLAG_I: out BOOLEAN):

end THE WEAPONS;

end WEAPONS:

76

--Tide weaponb.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System : Unix
--Description Body for Weapons task

with TEXTIO;
use TEXT_10;

package body WEAPONS is

--Task to handle functions of weapons officer

task body THEWEAPONS is

begin
accept CREATE;
PUTLINE("Creating WEAPONS-):
loop

accept DROPPACKIvGE(GFLAG_1: out BOOLEAN) do
GFLAG_I := TRUE;

end DROP-PACKAGE;
end loop;

end THE-WEAPONS;

end WEAPONS;

"77

--Title sender s.a (CLIPS-Ada Simulatoi Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler : VADS
--System Unix
--Description Specification for Command Sender

package COMMAND-SENDER is

procedure SEND(NEW_X in FLOAT:
NEW-Y: in FLOAT:
NEWHEADING : in FLOAT;
NEW SPEED: in FLOAT;
NEW-DEPTH: in FLOAT,
NEW-MODE : in INTEGER):

end COMMAND_SENDER;

--Title sender...b.a (CLIPS-Ada Simulator Version)
--Author :F.P. Thorntonl Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Body for Command Sender

with TEXT_1O. MATH, TRIGMATH. NETWORK-.SW:

use TEXT-1O. MATH. TRIG_MATH, NETWORXSW:

package body COMMAND..,SENDER is

package FLOATINOUT is new FLOATJIO(FLOAT).
package DNTEGER-JNOUT is new IN1TEGER-O(UINTEGER);
use FLOATINOUT. INTEGER_INOUT:

--Procedure to send tactical level information to the execution level

procedure SEND(NEWX : in FLOAT:
NEWY : in FLOAT:
NEWHEADING : in FLOAT:
NEW SPEED: in FLOAT:
NEWDEPTH: in FLOAT:
NEWMODE: in UINTEGER) is

begin
--Write updated command values to execution level
PUT_-FLOAT(RADTODEG(NEWHEADING)):
PUTC'Commanded Heading is: 1);
PUT(RADTO..DEG(NEW_HEADING). FORE=>3.AFT=>2. EXP=>O):
NEW-LINE:

PUTFLOAT(NEW-.DEPTH):
PUTU'Commanded Depth is: "1;
PUT(NEW DEPTH. FORE=>3.AFT=>2. EXP=>0):
NEWLINE:

PUTFLOAT(NEWSPEED):,
PUTC*Comnmanded Speed is: -1;
PUT(NEW-SPEED, FORE=>3. AFT=>2. EXP=>O):
NEW-LINE:

PUTFLOAT(NEW...X):,
PUTC-Commanded X is: -):
PUT(NEW_X. FORE-->3, AET=>2. EXP=>O):
NEW-LINE;

PUTFLOAT(NEW..Y)

79

PUTW"Commanded Y is: I;
PUT(NEW-.Y. FORE->3. APT->2. EXP=->O):
NEWLINE-;

PIYT.MODE(NEWýMODE);
PUITCCommanded Mode is: 1
case NEWMODE is

when I =>
PUT(CTransit").

when 2 =>
PUTr"Search"):

when 3 =>
PUT("Task-):.

when 4 =>
PUTC'*Retum'*);

when 5 =>
PUT("Recover"):

when others =>
PUT(Invalid Mode-)-,

end case.
NEWLINE(2);,

end SEND;

end COMMAND-SENTDER:

80

--Title guids.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for Guidance task

package GUIDANCE is

task THE-GUIDANCE is
entry CREATE;
entry GETGUIDANCECOMMANDS(NAVX : in out FLOAT:

NAV_Y: in out FLOAT:
NAVDEPTH: in out FLOAT;
NAV HEADING: in out FLOAT;
NAVSPEED: in out FLOAT:
WAYPOINT_X: in out FLOAT:
WAYPOINT_Y: in out FLOAT;
WAYPOINTDEPTH : in out FLOAT):

entry LOITER(NAV_X : in FLOAT:
NAV_Y : in FLOAT:
NAVDEPTH : in FLOAT:
NAV_HEADING : in FLOAT:
NAVSPEED: in FLOAT:
NAV_MODE : in INTEGER):

entry DOQHOMING(G-FLAG_2: out BOOLEAN):
end THE_GUIDANCE;

end GUIDANCE:

81

--Tide guid..b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler VADS
--System : Unix
--Description Body for Guidance task

with TEXTJO. SENSORYRECEIVER. GUIDANCEROUTER. NAVIGATORROUTER.
LOS-CALCULATOR. HOMINGCALCULATOR;

use TEXT_1O. SENSORY.RECEIVER, GUIDANCEROUTER, NAVIGATORROUTER:

package body GUIDANCE is

--Task to handle guidance functions such as Homing and LOS calculations

task body THEGUIDANCE is

GOALFLAG_3: BOOLEAN:= FALSE: --Flag for lower level objects
GUIDANCE_X : FLOAT:
GUIDANCEY : FLOAT:
GUIDANCE-DEPTH : FLOAT;
GUIDANCE_WAYPOINT_X : FLOAT:
GUIDANCEWAYPOINTY : FLOAT:
GUIDANCE_WAYPOINTT_DEPTH : FLOAT:
GUIDANCE-HEADING : FLOAT:
GUIDANCE SPEED : FLOAT:
GUIDANCEMODE: INTEGER:
GUIDANCEBEARING : FLOAT:
GUIDANCE_PANGE : FLOAT:
LOITERGUIDANCE_DONE : BOOLEAN := FALSE: --Flag to signal replanning done

begin
accept CREATE.
PUT LINE("Creating GUIDANCE"):
THE_ GUIDANCEROUTER.CREATE:
loop
select

accept GETGUIDANCE_COMMANDS(NAVX : in out FLOAT:
NAVY : in out FLOAT:
NAV-DEPTH: in out FLOAT;
NAVHEADING : in out FLOAT:
NAVSPEED: in out FLOAT:
WAYPOINTX : in out FLOAT;
WAYPOINT_Y : in out FLOAT:
WAYPOINTDEPTH: in out FLOAT) do

LOSCALCULATOR.DOLOSGUIDANCE(NAVX. NAVY. NAVDEPTH,
WAYPOINT_X. WAYPOINTY,
WAYPOINT DEPTH. NAVSPEED.

82

NAVHEADING);.
end GET.33UIDANCECOMM4ANDS,

or

accept DO-HOMING(GFLAG_2 out BOOLEAN) do
HOMING...CALCULATOR.DO HOMING-GUIDANCE(GOALFLAG_3);
if (GOALYLAG_3 = TRUE) then
GJLAG..2 :a TRUE;
GOAL...FLAG-3:- FALSE;

else
G-FLAG-.2 :a FALSE:

end if-,
end DQHOMING;

or
accept LOITER(NAVX: in FLOAT;

NAV_.Y : in FLOAT;
NAV_DEPTH: in FLOAT:.
NAV..HEADING : in FLOAT:
NAV-SPEED: in FLOAT:
NAV_MODE : in INTEGER) do

GUIDANCEWAYPOINTX: NAVX:
GUIDANCEWAYPOINTY := NAV-Y;
GUIDANCEWAYPOINTDEPTH: NAV-DEPTH;
GUIDANCE-HEADING := NAVHEADING;
GUIDANCESPEED := NAVSPEED;
GUIDANCEMODE := NAV_MODE;
loop
-.Simulator protocol delay
delay 0.5;

THESENSORYRECEIVER.RECEIVE(GUIDANCE-X. GUIDANCEY. GUIDANCEDEPTH,
GUIDANCE..HEADING. GUIDANCE-.BEARING.
GUIDANCE,.RANGE)-.

LOSCALCULATOR.DO_-LOSGUIDANCE(GUIDANCE..X. GUIDANCE-Y.
GUIDANCEDEPT7H.
GUIDANCE_WAYPOINTý_X.
GUIDANCEWAYPOINT_Y.
GUIDANCE..WAYPOINLDEPTH.
GUIDANCE -SPEED, GUIDANCEHEADING);.

THENAVIGATORROUTER.TAKE..LOITER_-COMMANIDS(GUIDANCEWAYPOINT-X,
GUIDANCE-WAYPOINTY.
GUIDANCEYHEADING.
GUIDANCESPEED.
GUIDANCE-.WAYPOINTLDEPTH,
GUIDANCE-.MODE.
LOITERGUIDANCE-DONE);

exit when LOITER-GUIDANCEDONE;
end loop;

end LOITER;
end select;

end loop:
end THE..GUIDANCE;

end GUIDANCE;

83

--Tide : guid.rs.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler : VADS
--System : Unix
--Description : Specification for Guidance Router task

package GUIDANCEROUTER is

task THEGUIDANCEROUTER is
entry CREATE:
entry TAKEHOMING_HEADING(HOMINGHEADING : in FLOAT:

HOMINGMODE : in INTEGER):
end THEGUIDANCEROUTER:

end GUIDANCE-ROUTER;

84

--Tide guid-r...b.a (CLIPS-Ada Simulator Version)
--Author :FJ'. Thornton Jr.
.-Revised 26 Aug 93
--Compiler VADS

-- Sysem :Unix
--Description Body for Guidance Router task

with TEXTJ0. NAVIGATOR-ROUTER-,
use TEXT 10. NAVIGATORROUTER,

package body GUIDANCEROUTER is

--Task to handle routing of requests through Guidance

task body THE-GUIDANCE_ROUJTER is

GUIDANCE-HEADING: FLOAT:
GUIDANCEMODE : INTEGER:,

begin
accept CREATE;
PUTLINE(*Creating GUIDANCE ROUTER�):
loop

accept TAKEHOMINGHEADING(HOMIINGHEADI.NG : in FLOAT;
HOMINGMODE: in INTEGER) do

GUIDANCE -HEADING := HOMINGHEADLNG:
GUIDANCEMODE: HOMINGMODE,

end TAKE-HOMINGHEADING:
THENAVIG ATOR-ROUTER.TAKE-GLIDANCEHE ADING(GUJIDANCEHEADING.

GUIDAINCE-MODE).
end loop:,

end THE GUIDANCE ROUTER:,

end GUIDANCE..ROUTER;

85

--Title gps-s.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for GPS Control

package GPS_CONTROL is

task THEGPS CONTROL is
entry CREATE;
entry GETGPSFIX(GFLAG_2 : out BOOLEAN);

end THE GPSCONTROL:

end GPSCONTROL:

86

--Title : gpsb.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler : VADS
--System : Unix
--Description : Body for GPS Control

with TEXT_10;
use TEXTIO;

package body GPSCONTROL is

task body THEGPSCONTROL is

begin
accept CREATE;
PUTLINE("Creating GPS CONTROL"):
loop
accept GET_GPSFIX(GJFLAG_2: out BOOLEAN) do

G-FLAG_2:= TRUE:
end GET GPSFIX:

end loop:
end THEGPSCONTROL;

end GPS CONTROL:

87

--Tide : sonars.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for Sonar Control task

package SONAR.CONTROL is

task THESONAR_CONTROL is
entry CREATE:
entry DOSEARCHPATERN(G_FLAG_2: out BOOLEAN.

NAV_HEADING : in FLOAT):
entry UNKNOWN-OBSTACLE_P(G_FLAG_2. RFLAG_2 : out BOOLEAN):
entry LOGNEWOBSTACLE(GFLAG_2: out BOOLEAN).

end THESONARCONTROL:

end SONAR-CONTROL:

88

--Title : sonarb.a
--Author F.P. Thornton Jr.
--Revised : 26 Aug 93
--Compiler VADS
--System Unix
--Description : Body for Sonar task

with TEXTJO. MATH, CALENDAR. NAVIGATOR-ROUTER, MISSIONMODEL,
SENSORYRECEIVER,
use TEXT_1O, MATH, CALENDAR. NAVIGATORROUTER. MISSIONMODEL,
SENSORYRECEIVER;

package body SONARCONTROL is

--Task to handle Sonar Control functions including search, checking for
--obstacles, and logging new obstacle position

task body TH SONARCONTROL is

SECONDS: constant DURATION:= 1.0:
LEGTIME: DURATION:= 15 * SECONDS:--15 sec legs (+ 15 sec in turns)
TURNTIME: constant DURATION:= 15.0;
INTERVAL: constant DURATION:= 15 * SECONDS:--Amount to increase box
NEXTTIME : TIME:
LEGNUM: INTEGER:= 0:
RANGELIMIT: constant FLOAT := 300.0: --Limits for sonar in Search mode
BEARINGLIMIT: constant FLOAT:= P1 / 3.0:
SONARX : FLOAT,
SONAR-Y : FLOAT:
SONAR-DEPTH : FLOAT;
SONAR-HEADING: FLOAT;
SONARBEARING : FLOAT:
SONARRANGE :FLOAT:
SONAR MODE: INTEGER := 2:
SEARCHHEADING : FLOAT;

begin
accept CREATE;
PUTLINE("Creating SONAR CONTROL-):
loop

select
--Do expanding box search pattern
accept DO SEARCHPATTERN(GFLAG_2: out BOOLEAN;

NAV HEADING: in FLOAT) do
SEARCHHEADING := NAV_HEADING.
NEXT_TIME := CLOCK + INTERVAL - TURN_TIME:
loop
if CLOCK > NEXT_TIME then --Change heading for new leg of search

89

if LEGNUM = 2 then -Expand the box
LEGTIME := LEGTIME + INTERVAL;
LEGNUM := 1;

end if;
--Change heading to make box corner and normalize
if (SEARCHHEADING > (PI / 2.0)) then -Commanded heading > 0
SEARCH_HEADING := SEARCH-HEADING - (PI / 2.0);

else --Commanded heading <= 0
SEARCHHEADING := SEARCH-HEADING + ((3.0* PI) / 2.0);

end if;
LEGNUM := LEG_.NUM + 1;
NEXTTIME := NEXT TIME + LEGTIME;

end if;
-Simulator protocol delay
delay 0.5;
THESENSORYRECEIVER.RECEIVE(SONARX, SONARY. SONAR-DEPTH.

SONAR HEADING, SONAR-BEARING,
SONARRANGE);

--Send commanded heading to Navigator
THE_NAVIGATOR_ROUTER.TAKEGUIDANCE-HEADING(SEARCH_HEADING,

SONARMODE);
--Check for valid range and bearing from sonar to end search
exit when (SONAR-RANGE < RANGE_LIMIT and

ABS(SONARBEARING) < BEARING_LIMIT):
end loop;
--Transition to Task mode
SONARMODE := 3;
THEMISSIONMODEL.SETLMODE(SONARMODE);
GFLAG_2 := TRUE:

end DOSEARCH.PATTERN;
or

accept UNKNOWNOBSTACLEP(GFLAG_2. RFLAG-2 : out BOOLEAN) do
GFLAG_2 := FALSE;
R-FLAG_2 := TRUE;

end UNKNOWNOBSTACLEP:
or

accept LOGNEW.OBSTACLE(G.FLAG_2.: out BOOLEAN) do
G_FLAG 2 := TRUE:

end LOGNEW_OBSTACLE;
end select;

end loop;
end THESONARCONTROL;

90

--Tide repla"...a (CLIPS-Ada Simulator Version)
-.Author F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler :VADS
--System :Unix
--Description Specification for Mission Replanner task

S--------------------------------------.------------.. . ---.----

package MlSSION-.REPLANNER is

task THE.M]NSSION_REPLANNER is
entry CREATE,
entry STARTLOCAL..REPLANNER:
entry STARTLGLOBAL-.REPLANNER.

end THE_M]SSIONftEPLANNER:

end M1SSION-REPLANNER:

91

--Title replan...b.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornion Jr.
--Revised 26 Aug 93
--Compiler V ADS
--System Unix
--Description Body for Mfission Replanner task

with TEXTJO, MIISSION-MODEL, NAVIGATORýROUTER;,
use TEXTJIO. M]SSION...MODEL, NAVIGATOR...ROUTER;,

package body MISSIONREPLANNER is

--Task to handle local and global replanning due to obstacles and system
--faults

task body TI{EMISSION-REPLANNER is

begin
accept CREATE;
PUTý_LINE(Creating MISSION REPLANNER'*):
loop

select
accept STARTLOCALREPLANNER:
--Delay to simulate replan time
delay 30.0;
THMISSION_.MODEL.SET..REPLA-N..ROUTE:
THENAVIGATORROUTER.REPLAýNDON'E:

or
accept STARTGLOBAL3REPLANN7ER:
--Delay to simulate replan time
delay 30.0:,
THE.M]USSION_.MODEL.SETREPLANROUTE:
THE. NAVIGATOR...ROUTER.REPLANDONE:

end select;
end loop;

end THE_MISSION_REPLANNER:

end MISSIONREPLANNER:

92

--Title los._s.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler VADS
--System Unix
--Description Specification for LOS Calculator

package LOS-CALCULATOR is

procedure DOLOSGUIDANCE(FROM-X : in FLOAT;
FROM_Y: in FLOAT;
LOS-DEPTH: in out FLOAT:
TO_X: in FLOAT;
TOQ_Y: in FLOAT:
TQDEPTH: in FLOAT:
LOS-SPEED: in FLOAT:
LOS-HEADING : in out FLOAT):

end LOS_CALCULATOR:

93

--Tide : Iosb.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler : VADS
--System Unix
--Description Body for LOS Calculator

with MATH, TRIGMATH;
use MATH, TRIGMATH;

package body LOS-CALCULATOR is

--Procedure to calculate updated heading to next waypoint

procedure DOLOSGUIDANCE(FROM-X: in FLOAT:
FROM_Y : in FLOAT:
LOSDEPTH: in out FLOAT;
TO_X : in FLOAT:
TOY : in FLOAT,
TO-DEPTH: in FLOAT-
LOSSPEED: in FLOAT:
LOSHEADING : in out FLOAT) is

TIMEOF ARRIVAL : FLOAT:
DELTATIME : FLOAT := 10.0:

begin
--Calculate updated heading to waypoint and normalize to 360 degrees
LOSHEADING := ATAN2((TO X - FROMX),(TOY - FROMIY)):
if LOSHEADING < 0.0 then
LOSHEADING := LOSHEADING + 2.0 * Ph:

end if:
--Calculate updated depth
TIMEOFARRIVAL := SQRT((TOX - FROMX)**2 + (TQY - FROM Y)**2) /

(LOSSPEED / 60.0);
LOSDEPTH := LOS-DEPTH + ((TODEPTH - LOS.DEPTH)

(DELTATIME / TIMEOFARRIVAL)):
end DOLOS_GUIDANCE:

end LOS-CALCULATOR;

94

--Tide homing.s.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised : 26 Aug 93
--Compiler : VADS
--System Unix
--Description : Specification for Homing Calculator
------ - - ----- - ------ -. ----- ------- - - -- .. ----- - - - -. - ----- - ------ - ----

package HOMINGCALCULATOR is

procedure DOHOMINGGUIDANCE(GFLAG_3: out BOOLEAN):

end HOMINGCALCULATOR:

95

--Title :homing~b.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised :26 Aug 93
*-Compiier :VADS
--System :Unix
--Description Body for Homing Calculator

with TEXTJO. MATH. SENSORY...RECEIVER. GUIDANCE-ROIUrER
use TEXT_1O. MATH, SENSORY...RECEIVER. GUIDANCE-..ROUTFER.

package body HOMING-CALCULATOR is

--Procedure to calculate heading for homing
-----------.. --

procedure DO_HOMINGGU1DANCE(GJFLAG_3: out BOOLEAN) is
HOMING_X: FLOAT;
HOMING_Y : FLOAT;
HOMIINGDEPTH : FLOAT;
HOMING_HEADING : FLOAT;
HOMING..BEARING : FLOAT:
HOMING-RANGE : FLOAT;
HOMING...MODE: INTEGER := 3; --Initialize to task mode
EPSILON: constant FLOAT := 20.0: --Tolerance for reaching target

begin
loop

--Simulator protocol delay
delay 0.5;
THESENSORYRECEIVER.RECEIVE(HOMING..X. HOMINGY. HOMINGDEPTH,

HOMING_HEADING. HOMING_BEARING. HOMINGRANGE);
-Calculate updated heading to target
HOMINGHEADING := HOMINGHEADING + HOMINGBEARING;
--Normalize heading to 360 degrees
if HOMINGHEADING < 0.0 then
HOMINGHEADING := HOMINGHEADING + (2.0 *P1):

elsif HOMING-.HEADING >= (2.0 *P1) then
HOMINGHEADING := HOMIING..HEADING - (2.0 *P1);,

else
null:

end if:
-Send guidance commands t~o Guidance
THEGUIDANCEROUTER.TAKEHOMINCLHEADING(HOMING-YEADING,

HOMIINGMODE);.
exit when HOMENG...RANGE < EPSILON;

end loop;,
G-JLAG-3: TRUE:

end DQ..HOMING..GUIDANCE:
end HOMING..CALCULATOR;

96

--Tide misss.a
--Author F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler VADS
"--System Unix
--Description : Specification for MISSION MODEL task

package MISSIONMODEL is

task THE_MISSIONMODEL is
entry CREATE.
entry INITIALIZE(G_FLAG_I: out BOOLEAN);
entry GIVE_FIRSTWAYPOINT(INITIAL_X : out FLOAT:

INITIALY : out FLOAT;
INITIALDEPTH: out FLOAT:
INITIAL MODE : out INTEGER:
INITIAL HEADING: out FLOAT:
INITIALSPEED : out FLOAT:
FIRST_WAYPOINT..X: out FLOAT:
FIRSTWAYPOINT_Y : out FLOAT:
FIRSTWAYPOINTDEPTH : out FLOAT):

entry INTRANSIT_P(GFLAG_I. RFLAG_I : out BOOLEAN):
entry TRANSITDONEP(GFLAGI, RFLAG_1: out BOOLEAN):
entry INSEARCH_P(GFLAG 1, RFLAG_) : out BOOLEAN):
entry SEARCH_DONEP(G_FLAG_I, R_FLAG_1 : out BOOLEAN):
entry INTASKP(GFLAG_I, RFLAG_1 : out BOOLEAN):
entry TASKDONEP(GFLAG_1. RFLAG_1 : out BOOLEAN);
entry IN_RETUPRN_P(GFLAG_1. R_FLAG_I: out BOOLEAN):
entry RETURNDONE_P(GFLAG_I. RFLAG_) : out BOOLEAN):
entry GIVENEXTWAYPOINT(NEXT_X: out FLOAT:

NEXT_Y : out FLOAT:
NEXTDEPTH : out FLOAT:
NEXT_SPEED: out FLOAT:
NEXT_MODE: out INTEGER):

entry SETREPLANROUTE:
entry SETMODE(MISSIONMODE : in INTEGER):
entry GETMODE(MISSIONMODE : out INTEGER):

end THEMISSIONMODEL;

end MISSIONMODEL:

97

--Tidle :missý_b~a (CLIPS-Ada Simulator Version)
--Author : RP. Thornton Jr.
--Revised :28 Aug 93
--Compiler VADS
--system Unix
--Description Body for Mission Model task

.-------------.-.-.--

with TEXTJO, NETWORKSW;.

use TEXTJO. NETWORK SW;

package body MISSIONMODEL is

package FLOATINOUT is new FLOATJO(FLOATh:
package IN'TEGER-JNOUT is new INTEGER-IO(INTEGER);
use FLOATINOUT. INTEGERJINOUT:

--

--Task to manage mission database
.--

task body THEMISSIONMODEL is

'NITAL_STATEFILE : FILETYPE:
WAYPOINTFIE : FILETYPE.
FINAL_GOALFILE : FELETYPE:
--Data structure to hold wayrpoints
type WAYPOINT is

record
X: FLOAT,
Y: FLOAT:
DEPTH: FLOAT;
HEADING : FLOAT;
MODE: IN1TEGER:
SPEED : FLOAT:

end record;
~NITAL : WAYPOINT:

FINAL : WAYPOINT;
MAX_WAYPOINTS : INTEGER: 25
type WAYPOINTS is array (IN1TEGER, range I ..MAX_.WAYPOINTrS) of WAYPOINT;.
WAYPOINTLIST: WAYPOINTS;
WAYPOINTýCOUNT: INTEGER:
1: INTEGER := 1; -Counter for total number of waypoints
K: INTEMGER := 1; --Counter for current waypoint
CURRENT...MODE : INTEGER := 1; --Initialize mode to Transit

begin
accept CREATE;
PUT_ýLlNEV-Creating MISSION MODEL");
loop

select

98

--Initialize Mission Model with initial state, waypoints, final goal
accept INITALIZE(GLAGJl out BOOLEAN) do

begin
--Load initial state from file
OPEN(INMTALSTATEFILE, MODE => IN-FILE, NAME => "initial~sate");
GET(INITIALSTATE-FILE, INITIAL.X);
GET(INITIAL..STATEJFILE, InITAL.Y);
GET(INITIAL-STATE-!ILE. INITIAL.DEPTH);
GET(INITIAL-STATEJFILE. INITIAL.HEADING):
PUTFlLLOAT(INMTAL.X):,
PUT_FLOAT(INITAL.Y);
PUT_FLOAT(INmAL.DEPTH):,
PtJTJLOAT(INMTAL.HEADING):
CLOSE(INITIAL-STATE-FILE);

--Load waypoints from file
OPEN(WAYPOUINTJILE. MODE => INFILE. NAME => -waypoints-):
GET(WAYPOINT_FILE. WAYPOINTCOUNT):
SKIPLINE(WAYPO[NL-FILE):
PUTFLOAT(FLOAT(WAYPOINTCOUNT)):
while not ENDOFFILE(WAY POINT -FILE) loop
GET(WAYPOINTFJLE. WAYPOJNT..LIST(J).SPEED):
GET(WAYPOINTIFILE. WAYPOINTLIST(I).X):
GET(WAYPOINT_FILE. WAYPOINTLIST(I).Y);
GET(WAYPOINT_FILE. WAYPOINTLIST(I).DEPTH);
GET(WAYPOINTFILE, WAYPOINTLIST(I).MODE):
SKIP _LINE(WAYPOINT FILE):
PUT_FLOAT(WAYPOINLrLIST(l).SPEED):
PUTFLOAT(WAYPOINTLIST(I).X);
PUJT_FLOAT(WAYPOINTLIST(I).Y):
PUT_FLOAT(WAYPOINLrLIST(I).DEPTH):
1: I + L,

end loop;
CLOSE(WAYPOINTJIELE):

--Load final goal from file
OPEN(FINALGOAL_-FILE. MODE => IN_FILE. NAME => -final-goal"):
GET(FINALGOAL_-FILE. FINAL.X):
GET(FINALGOALFILE. FINAL.Y):
PUJTFLOAT(FINAL.X):
PUJTFLOAT(FINAL.Y):.
CLOSE(FINAL..,GOALFELE):

G_FLAG_1 := TRUE;
exception

when others =>
PUJT_.LINEC-Enor in mission fides-)-,
G-FLAG-1: FALSE:

end:
end INITIALIZE:

or

99

--Select initial stae and first waypoint values
accept GI VE_.FIRSTWAYPO1NT(INITIALX: out FLOAT;

INITAL..Y: out FLOAT-.
I[NITALDEPTH : out FLOAT;
INITIALMODE: out INTGER:.
INITIAL..HEAD[NG - out FLOAT-.
l[NITIAL_SPEED: out FLOAT-.
FMST._WAYPOINT._X: out FLOAT;
FIRST-WAYPOI[NTY out FLOAT:
FIRSTWAYPOINT-DEPTH: out FLOAT) do

InITAL-X := INITAL.X
INTIALY:m INITAL.Y:
INM1AL..DEPTH := INMrAL.DEPTH;
INMTAL-HEADING :x INMTAL.HEADING:
INITAL_MODE: CURRENTMODE;
MNTIALSPEED := WAYPOINTUIST(l).SPEED:

FIRST_-WAYPOINT-X:= WAYPOINT-LIST(l).X;
FIRSTý_WAYPOINT_Y := WAYPONThJLIST(1).Y;.
FIRST_WAYPOINTDEPTH := WAYPOINTLIST(I).DEPTH-,

end GIVEFIRSTWAYPOINT;,
or
--Entries to determine mission mode
--Integer values equate to modes:
-- I = Transit, 2 = Search. 3 = Task, 4 = Return, 5 =Recover

accept IN_TRANSITP(GFLAG_I. RFLAG I out BOOLEAN) do
if CURRENT-MODE = 1 then
GFLAG-1 := TRUE;

else
G_FLAG_ I:= FALSE:

end if;
R_FLAG_ I:= TRUE:

end INTRANSITP;
or
accept TRANSIT_DONEP(G_-FLAG_1. R_FLAG_1: out BOOLEAN) do

if CURRENL MODE> I then
G_FLAG_ I:= TRUE:

else
GFLAGI := FALSE,

end if;,
RFLAG-1 := TRUE:

end TRANSI[TDONEP;
or
accept IN_-SEARCHP(G_.YLAGJ, RFLAGJ : out BOOLEAN) do
if CURRENTMODE = 2 then
GJFLAGJ := TRUE;

else
GYLAGJ := FALSE.

end if;
R...FLAG_1 := TRUE;

100

end INSEARCHIP:
or

accept SEARCHDONE.P(GJFLAG 1. RJFLAG_ I out BOOLEAN) do
if CURRENTMODE > 2 then
GFLAGI := TRUE;

else
GFLAGI := FALSE:

end if:
RFLAG-1 :- TRUE:

end SEARCH-DONE-P;
or

accept IN-TASK-P(GFLAG- 1. RFLAG_ I: out BOOLEAN) do
if CURRENTMODE = 3 then

G FLAG_ :=TRUE:
else
GFLAGI := FALSE:

end if:
RFLAG_ := TRUE:

end INTASKP;
or

accept TASKDONE P(G-FLAG 1, R_FLAG) I: out BOOLEAN) do
if CURRENTMODE > 3 then

G FLAG- I:= TRUE:
else
GFLAG_I := FALSE:

end if:
R FLAG_1 := TRUE:

end TASKDONEP:
or

accept INRETURNP(GFLAG_ 1. RFLAG_ I out BOOLEAN) do
if CURRENTMODE = 4 then

G FLAG) := TRUE:
else
G_FLAGI :=FALSE:

end if:
RFLAGI := TRUE:

end INRETURNP;
or
accept RETURNDONEP(GFLAG_I. R_FLAG_) : out BOOLEAN) do

if CURRENTMODE > 4 then
PUTLINE("*********Goal Reached**********")

GFLAGI := TRUE:
else

G FLAGI := FALSE;
end if:
RFLAGl := TRUE:

end RETURNDONE_P;
or
--Retrieve next waypoint for Navigator
accept GIVENEXTWAYPOINT(NEXT_X: out FLOAT;

NEXT Y : out FLOAT:

101

NEXTDEPTH out FLOAT;
NEXTSPEED: out FLOAT;
NEXTLMODE : out UINTEGER) do

NEXL-MODE := WAYPOINTLIST(K).MODE:
NEXT-.SPEED :- WAYPOINTLIST(K).SPEED:
if (CURRENT.-MODE = 1) or (CURRENT-.MODE = 2) or

(CURRENT-MODE = 4) then --Normal case:use next waypoint X.Y.DEPT
NEXT-Xa WAYPOINT L1ST(K + 1).X;
NEXTLY :- WAYPOINTLIST(K + 1).Y.
NEXTDEPTH := WAYPOINTLIST(K + l).DEPTH;
CURRENT MODE :- WAYPOINTLIST(K).MODE;
K:w K +1;

else --Odd case:use current waypoint X.Y.DEPT
NEXT..X := WAYPOINTJJLST(K).X;
NEXTY : WAYPOINTLIST(K).Y;
NEXLýDEPTH := WAYPOINTýLIST(K).DEPTH;:
CURRENT..MODE := WAYPOINT_LIST(K).MODE:.

end if;
end GIVENEXTWAYPOINT;,

or
.-Change waypoint. mode, and speed for replan route
accept SET_REPLAN-ROUTE do

K:=lI- 3;
WAYPOINT'LIST(K).MODE: 4:
WAYPOINT_-LIST(K).SPEED: WAYPOINTLJST(K + I).SPEED:

end SETREPLAN_ROUTE;.
or

accept SETMODE(MISSIONMODE : in INITEGER) do
CURRENT_MODE := MISSION_MODE.

end SETMODE:
or

accept GETý_MODE(MISSION_MODE: out INTEGER) do
MISSIONMODE: CURRENT MODE:

end GETMODE;
end select;

end loop:.
end THB...MSSIONMODEL:

end MISSION..MODEL;

102

--Tide : world_s.a (CLIPS-Ada Simulator Version)
--Author F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System Unix
--Description : Specification for World Model task
oo ---.-o-- oo• .. o .°--- o-. - oo°-

package WORLDMODEL is

task THEWORLDMODEL is
entry CREATE;
entry INITIALIZE(GFLAG : out BOOLEAN):
entry GET3SONARCONTACT(SONARX: out FLOAT:

SONARY: out FLOAT):
entry ADDOBSTACLE(OBSTACLEX : in FLOAT:

OBSTACLEY: in FLOAT.
OBSTACLEDEPTH: in FLOAT):

end THE_WORLD_MODEL;

end WORLDMODEL;

103

.-Title world_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler : VADS
--System : Unix
--Description : Body for World Model task
... oM. .. ,.. - - --- - ----- ---- --- ..------- -- --- .------ ------- ------- -- - - -------- - ----- -°° - ---

with TEXTJO, NETWORKSW;
use TEXTIO. NETWORKSW:

package body WORLD-MODEL is
package FLOATJNOUT is new FLOATJO(FLOAT).
package INTEGER_INOUT is new [NTEGERiO(INTEGER);
use FLOATINOUT, INTEGERINOUT;

--Task to manage world database, which includes obstacles

task body THEWORLDMODEL is

OBSTACLEFILE : FILETYPE:
--Data structure to hold obstacles
type OBSTACLE is

record
X : FLOAT;
Y : FLOAT:
DEPTH: FLOAT:

end record:
CURRENT OBSTACLE: OBSTACLE:
NEXTOBSTACLE : OBSTACLE:
MAX-OBSTACLES : INTEGER := 25:
type OBSTACLES is array (INTEGER range l..MAXOBSTACLES) of OBSTACLE:
OBSTACLE-LIST: OBSTACLES:
OBSTACLE_COUNT: INTEGER:
J : INTEGER := 1; --Counter for total number of obstacles

begin
accept CREATE:
PUTLINE("Creating WORLD MODEL");
loop

select
--Initialize World Model by loading obstacles
accept INITIALIZE(GFLAG_1 : out BOOLEAN) do

begin
OPEN(OBSTACLEFILE. MODE => IN_FILE. NAME => "obstacles-)-
GET(OBSTACLE-FILE. OBSTACLE-COUNT);
SKIPLINE(OBSTACLEFILE);
PUT.FLOAT(FLOAT(OBSTACLE_ COUNT));
while not END..OFFILE(OBSTACLEJILE) loop

104

GET(OBSTACLE-JLE, OBSTACLE-LIST(J).X);
GET(OBSTACLE-FILE, OBSTACLE LJST(J).Y);,
GET(OBSTACLE.YILE, OBSTACLE-.LIST(J).DEPTH):
SKIP...LIhE(OBSTACLE.YILE);
PUT-JLOAT(OBSTACLE...LJST(i).X);
PUTFLOAT(OBSTACLE-OLST(J).Y);
PUTFLOAT(OBSTACLE...LST(J).DEPMH)
J:- j+ 1:.

end loop.
CLOSE(OBSTACLEJFILE).

NEXLýOBSTACLE := OBSTACLE...LIST(J:
G..FLAG-1 :- TRUE:

exception
when others s
PUT...LINEC'Error in world files-);
G-.FLAGI := FALSE;

end.
end WIiTIALIZE;

or
.-Get an obstacle for sonar target
accept GETý_SONAR_CONTACT(SONAR_X: out FLOAT:

SONAR_Y : out FLOAT) do
SONARX := OBSTACLE UIST(l).X:,
SONAR..Y: OBSTACLE..LIST(I).Y;,

end GEL-SONARCONTACT:
or
--Add a new obstacle
accept ADD_OBSTACLE(OBSTACLEX : in FLOAT:

OBSTACLE_-Y : in FLOAT;
OBSTACLE...DEPTH: in FLOAT) do

NEXILOBSTACLE.X := OBSTACLE_X-
NEXTOBSTACLE.Y: OBSTACLE -Y;
NEXT_.OBSTACLE.DEPTH := OBSTACLEDEPTH;
NEX7LOBSTACLE: OBSTACLE..LIST(J).
J := J+ 1,

end ADDOBSTACLE:
end select:

end loop;
end THE)A'ORLD_.MODEL;

end WORLD_MODEL:

105

--Title receiv-s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thornton Jr.
--Revised 26 Aug 93
--Compiler VADS
--System : Unix
--Description Specification for Sensory Receiver task

package SENSORY-RECEIVER is

task THE_SENSORYRECEIVER is
entry CREATE;
entry RECEIVE(CURRENTLX: in out FLOAT:

CURRENTY: in out FLOAT:
CURRENTDEPTH: in out FLOAT,
CURRENTIEADING: in out FLOAT.
CURRENTBEARING : in out FLOAT:
CURRENTRANGE: in out FLOAT):

end THESENSORY-RECEIVER:

end SENSORYRECEIVER:

106

-Tide : rceiv.b~a
--Author F.P. Thornton Jr.
--Revised :26 Aug 93
--Compiler VADS
--System : Unix
--Description Body for Sensory Receiver task

with TEXT_1O. MATH, TRIGMATH. NETWORKSW. WORLD_MODEL:

use TEXTIO. MATH. TRIG-MATH. NETWORKSW. WORLDMODEL:

package body SENSORYRECEIVER is

package FLOATJNOUT is new FLOAT IO(FLOAT);
package INTEGERINOUT is new INTEGERIO(INTEGER):
use FLOATINOUT. INTEGERINOUT:

--Task to get navigation status values from execution level and provide
--them to the tactical level

task body THESENSORYRECEIVER is

RECEIVED: BOOLEAN:= FALSE:
CURRENTALT: FLOAT:
CURRENT_SPEED : FLOAT:
SONARX : FLOAT:
SONARY : FLOAT:

begin
accept CREATE:
PUT-LINE"Creating SENSORY RECEIVER"):
loop

accept RECEIVE(CURRENTX : in out FLOAT:
CURRENT_Y : in out FLOAT:
CURRENTDEPTH : in out FLOAT:
CURRENTHEADING : in out FLOAT:
CURRENTBEARING : in out FLOAT:
CURRENTRANGE : in out FLOAT) do

CURRENTX := get-float:
PUT("Current X = ").
PUT(CURRENTX, FORE=>3. AFT=>2.EXP=>O);
NEW-LINE:

CURRENTY := get-float;
PUT("Cufent Y = ");
PUT(CURRENT.I_Y, FORE=>3, AFT=>2.EXP=>0):
NEW_LINE:

CURRENTALT := getfloat:

107

CURRENL-DEPTH :a get-float;
PUT("Cunrent Depth - ";
PUT(CURRENT-DEPTH. FORE=>3. AFla.>2.EXPz>0):,
NEW-.LINE-,

CURRENT-HEADING :- DEG.YO...RAD(get-float):
PUT("Cunrent Heading w=1:
PUT(RAD-7X0DEG(CUREN7ý-EADING). FORE=>3. APTm>2.EXP=>0):
NEW_.LINE;

--Speed does not come from the simulator
CURRENL.SPEED := 0.0;

--Calculate bearing and range to simulated sonar contact
if not RECEIVED then
THE..WORLD_-MODEL.GET-SONARCONTACT(SONARX. SONARY):
RECEIVED: TRUE;

end if,
CURRENTBEARING: CURRENTHEADING -

ATAN2((SONAR..X - CURRENT-X).(SONAR-.Y - CURRENT-Y)
--Normalize to 360 degrees but keep negative values for bearing
if CURRENTBEARING < 0.0 then
CURRENT-BEARING: ABS(CURRENT-BEARING):

elsif CURRENTBEARINIG > PI then
CURRENTBEARING: (2.0 0 P1) - CURREN7_BEARING:

else --00 <= CURRENTBEARING <= PI
CURRENT-BEARING: 0.0 - CURRENT-BEARING;

end if:
PUTC"Current Bearing 1
PUT(RADTODEG(CURRENTBEARING), FORE=->3. AFT=>2. EXP=>0):
NEW-LINE;

CURRENTRANGE: SQRT((SONAR..X - CURRENTX)**2 +
(SONAR..Y - CURRENTY)**2):

PUT(Cuwrent Range =";
PUT(CURRENT_-RANGE. FORE=->3. AFT=>2. EXP=>0):
NEWLINE:

end RECEIVE;.
end loop;

end THESENSORY_RECEIVER:

end SENSORY..RECEIVER:

108

--Tide : r.,mth.a
--Author : R.B. Byrnes
--Revised : 18 Aug 93 by F.P. Thornton Jr.
-Compiler : VADS
--System : Unix
--Description : Trigonometric and conversion functions

with MATH;
use MATH.

package TRIG_MATH is
LOWERLIMIT: constant FLOAT := 0.000001;
function ATAN2(Y,X : FLOAT) return FLOAT;
function RADTO_DEG(X : FLOAT) return FLOAT;
function DEGTORAD(X : FLOAT) return FLOAT:

end TRIGMATH:

package body TRIGMATH is

--Trig functions for heading and bearing calculations

function SIGNUM (R : FLOAT) return FLOAT is
begin

if R < 0.0 then
return -1.0;

else
return +1.0;

end if:
end SIGNUM;

function ATAN2(Y.X : FLOAT) return FLOAT is
begin
if ABS(X) > LOWER_LIMIUT then

if X > 0.0 then
return ATAN(Y/X):

else
return ATAN(Y/X) + (SIGNUM(Y) PI);

end if;
else

return SIGNUMI(Y) * (P1/2.0);
end if;

end ATAN2;

--Conversion functions for angles

function RADTODEG(X : FLOAT) return FLOAT is

109

begin
return X * (180.0 / PI):

end RADTODEG;

function DEG_TO_RAD(X: FLOAT) return FLOAT is

begin
return X * (PI / 180.0);

end DEGTORAD;

end TRIGMATH;

110

--Tide netwki.a
--Author R.B. Bymes
--Revised 30 Jul 93 by F.P. Thornton Jr.
--Compiler VADS
--System Unix
.-Description: Interface to C communication routines

package NETWORKSW is

-- CLIENT comms. supporting Tactical<->Execution level

procedure startcomms; - make connection to E-level
procedure putjfloat (X : FLOAT): -- send float to E-level
function gecfloat return FLOAT; -- receive flow from E-Jevel
procedure put-mode (X : INTEGER): -- send mode to E-level
procedure stop-comms; -- close connection to E-level

-- System clock access function. Better than Ada's

procedure get-time:

private

pragma INTERFACE(C, starLtcomms);
pragma INTERFACE(C. putfloat):
pragma INTERFACE(C. get_float);
pragma INTERFACE(C. stop-comms);
pragma INTERFACE(C. put-mode);
pragma INTERFACE(C, gettime):

pragma LINKWITH("network.sw.o"); -- lump all above files together

end NETWORKSW;

1l1

APPENDIX B. TRACES OF MISSION EXECUTION

1. MULTI-PHASE MISSION

CLIPS> (assert (start))
CLIPS> (run)
Creating OOD
Creating MISSION MODEL

Creating WORLD MODEL

Creating SENSORY RECEIVER

Creating OOD ROUTER
Creating NAVIGATOR
Creating ENGINEERING

Creating WEAPONS
Creating NAVIGATOR ROUTER

Creating GUIDANCE
Creating GPS CONTROL
Creating MISSION REPLANNER
Creating SONAR CONTROL
Creating GUIDANCE ROUTER
READYVEHICLEFORLAUNCH GOAL FLAG = 1

SELECTFIRST_WAYPOINT GOAL FLAG = .
IN_TRANSITP GOAL FLAG = 1
POWERGONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEMPROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0
REACH_WAYPOINT_P GOAL FLIAG = 0
DIVING_SYSTEM_PROBLEMP GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!
UNKNOWN_OBSTACLE_P GOAL FLAG = 0
Commanded Heading is: 45.00
Commanded Depth is: 5.89
Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

112

SENDSETPOINTS AND MODES GOAL FLAG = 1
TRANSITDONE_P GOAL FLAG = 0
INSEARCHP GOAL FLAG = 0
INTASKP GOAL FLAG = 0
INRETURNP GOAL FLAG = 0
INTRANSITP GOAL FLAG = 1
TRANSITDONEP GOAL FLAG = 0
POWERGONEP GOAL FLAG = 0
COMPUTERSYSTEMPROBP GOAL FLAG = 0
PROPULSIONSYSTEMPROB_P GOAL FLAG = 0
STEERINGSYSTEMPROBP GOAL FLAG = 0
No crit-system-prob branch successful!
GPSNEEDED_P GOAL FLAG = 0
Current X = 8.81
Current Y = 0.00
Current Depth = -0.00
Current Heading = 89.00
Current Bearing = -21.92
Current Range = 641.87
REACHWAYPOINTP GOAL FLAG = 0
DIVINGSYSTEMPROBLEMP GOAL FLAG = 0
BUOYANCY_SYSTEM_PROBP GOAL FLAG 0
THRUSTERSYSTEMPROBP GOAL FLAS = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOADPROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 43.97
Commanded Depth is: 6.00
Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

SEND_SETPOINTSANDMODES GOAL FLAG =

IN_SEARCH_P GOAL FLAG = 0
INTASKP GOAL FLAG = 0
INRETURN_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONEP GOAL FLAG = 0
POWERGONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0

113

STEERINGSYSTEMPROBP GOAL FLAG = 0
No crit-system-prob branch successful!
GPSNEEDED_P GOAL FLAG = 0
Current X = 17.39
Current Y = -0.05
Current Depth = -0.01
Current Heading = 88.00
Current Bearing = -21.23
Current Range = 634.00
REACH_WAYPOINT_P GOAL FLAG = 0
DIVINGSYSTEMPROBLEMP GOAL FLAG = 0
BUOYANCY._SYSTEMPROBP GOAL FLAG = 0
THRUSTERSYSTEMPROBP GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 42.93
Commanded Depth is: 6.09
Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

GPS_NEEDEDP GOAL FLAG = 0
Current X = 240.39
Current Y = 234.65
Current Depth = 48.17
Current Heading = 32.00
Current Bearing = 55.56
Current Range = 359.94
REACH_WAYPOINT_P GOAL FLAG = 0
DIVINGSYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCYSYSTEMPROBP GOAL FLAG = 0
THRUSTERSYSTEMPROB_P GOAL FLAG = 0
LEAKTEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 32.04
Commanded Depth is: 52.38
Commanded Speed is: 250.00

114

Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

SENDSETPOINTSAND_MODES GOAL FLAG =
IN_SEARCH_P GOAL FLAG = 0
IN_TASK_P GOAL FLAG = 0
IN_RETURNP GOAL FLAG = 0
IN_TRANSITP GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEMPROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
o crit-system-prob branch successful!

GPS_NEEDED_P GOAL FLAG = 0

*****At waypoint, coming to new heading*****

Current X = 245.06
Current Y = 241.97
Current Depth = 49.04
Current Heading = 32.00
Current Bearing = 56.70
Current Range = 355.04
REACHWAYPOINT_P GOAL FLAG = 1
GET_NEXTWAYPOINT GOAL FLAG = 1
DIVING_SYSTEM_PROBLEMP GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEMPROB_P GOAL FLAG = 0
LEAKTESTP GOAL FLAG = 0
PAYLOADPROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search

SEND_SETPOINTS_AND_MODES GOAL FLAG =
INSEARCH_P GOAL FLAG = 1
Current X = 249.73
Current Y = 249.32

115

Current Depth = 49.82
Current Heading = 32.00
Current Bearing = 57.89
Current Range = 350.27
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search

Current X = 254.40
Current Y = 256.71
Current Depth = 50.51
Current Heading = 32.00
Current Bearing = 59.11
Current Range = 345.66
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search

Current X = 259.08
Current Y = 264.11
Current Depth = 51.21
Current Heading = 32.00
Current Bearing = 60.37
Current Range = 341.22
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search

Current X = 301.47
Current Y = 222.07
Current Depth = 54.45

116

Current Heading = 123.00
Current Bearing = -38.35
Current Range = 299.84
Commanded Heading is: 121.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search

DO_SEARCH_PATTERN GOAL FLAG =

SEARCH_DONE_P GOAL FLAG = 1

* SEARCH SUCCESSFUL. *

IN_SEARCH_P GOAL FLAG = 0
IN_TASKP GOAL FLAG = 1
Current X = 308.74
Current Y = 217.49
Current Depth = 54.45
Current Heading = 123.00
Current Bearing = -39.37
Current Range = 293.07
Commanded Heading is: 83.63
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Task

Current X = 316.03
Current Y = 212.91
Current Depth = 54.45
Current Heading = 123.00
Current Bearing = -40.44
Current Range = 286.38
Commanded Heading is: 82.56
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Task

117

Current X = 323.31
Current Y = 208.28
Current Depth = 54.45
Current Heading = 121.00
Current Bearing = -39.58
Current Range = 279.82
Commanded Heading is: 81.42
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Task

Current X = 576.69
Current Y = 243.88
Current Depth = 56.06
Current Heading = 76.00
Current Bearing = -0.71
Current Range = 24.10
Commanded Heading is: 75.29
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Task

Current X = 585.25
Current Y = 246.07
Current Depth = 56.06
Current Heading = 76.00
Current Bearing = -0.93
Current Range = 15.27
Commanded Heading is: 75.07
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commandci Y is: 150.00
Commanded Mode is: Task

HOMING GOAL FLAG = 1

118

DROPPACKAGE GOAL FLAG = 1
GETGPSFIX GOAL FLAG = 1
GET_NEXTWAYPOINT GOAL FLAG = 1
TASKDONEP GOAL FLAG = 1

"* TASK SUCCESSFUL.
**** * *** *** * *** ******* ** ****

IN__TASKP GOAL FLAG = 0
INRETURNP GOAL FLAG = 1
POWERGONEP GOAL FLAG = 0
COMPUTERSYSTEMPROB_P GOAL FLAG = 0
PROPULSION__SYSTEMPROBP GOAL FLAG = 0
STEERINGSYSTEMPROBP GOAL FLAG = 0
No crit-system-prob branch successful!
GPSNEEDED_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 0
Current X = 593.81
Current Y = 248.26
Current Depth = 56.06
Current Heading = 76.00
Current Bearing = -1.74
Current Range = 6.43
REACHWAYPOINTP GOAL FLAG = 0
DIVING_SYSTEMPROBLEMP GOAL FLAG = 0
BUOYANCY_SYSTEMPROB_P GOAL FLAG = 0
THRUSTERSYSTEMPROBP GOAL FLAG = 0
LEAKTEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 235.66
Commanded Depth is: 47.08
Commanded Speed is: 360.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Return

SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
IN_SEARCH_P GOAL FLAG = 0
IN_TASKP GOAL FLAG = 0
RETURNDONE_P GOAL FLAG = 0
INRETURN_P GOAL FLAG = 1
POWER_GONE_P GOAL FLAG = 0
COMPUTERSYSTEMPROBP GOAL FLAG = 0

119

PROPULSIONSYSTEM_PROBP GOAL FLAG = 0
STEERINGSYSTEMPROBP GOAL FLAG = 0
No crit-system-prob branch successful!
GPSNEEDED_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 0
Current X = 602.39
Current Y = 250.45
Current Depth = 56.06
Current Heading = 76.00
Current Bearing = -176.59
Current Range = 2.43
REACHWAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROBP GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAKTEST_P GOAL FLAG = 0
PAYLOAD_PROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 236.61
Commanded Depth is: 47.49
Commanded Speed is: 360.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Return

GPS_NEEDED_P GOAL FLAG = 0
INTRANSIT_P GOAL FLAG = 0
Current X = 308.61
Current Y = 43.42
Current Depth = 20.17
Current Heading = 220.00
Current Bearing = -165.33
Current Range = 357.18
REACH_WAYPOINT_P GOAL FLAG = 0
DIVINGSYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEMPROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROBP GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!

120

Commanded Heading is: 212.68
Commanded Depth is: 19.53
Commanded Speed is: 360.00
Commanded X is: 300.00
Commanded Y is: 30.00
Commanded Mode is: Return

SEND_SETPOINTSAND_MODES GOAL FLAG = 1
IN._SEARCH_P GOAL FLAG = 0
INTASK_P GOAL FLAG = 0
RETURN_DONEP GOAL FLAG = 0
IN_RETURN_P GOAL FLAG = 1
POWER_GONE_P GOAL FLAG = 0
COMPUTERSYSTEMPROB_P GOAL FLAG = 0
PROPULSIONSYSTEMPROB_P GOAL FLAG = 0
STEERING_SYSTEMPROB-P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 0
*****At waypoint, coming to new heading****

Current X = 300.79
Current Y = 34.16
Current Depth = 19.81
Current Heading = 217.00
Current Bearing = -162.81
Current Range = 368.93
REACHWAYPOINTP GOAL FLAG = 1
GET_NEXTWAYPOINT GOAL FLAG = 1
DIVING_SYSTEMPROBLEM_P GOAL FLAG = 0
BUOYANCYSYSTEM._PROBP GOAL FLAG = 0
THRUSTER_SYSTEM_PROBP GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 190.82
Commanded Depth is: 22.45
Commanded Speed is: 360.00
Commanded X is: 0.00
Commanded Y is: 0.00
Commanded Mode is: Recover

SEND_SETPOINTS_AND..MODES GOAL FLAG =
INSEARCH_P GOAL FLAG = 0

121

INTASKP GOAL FLAG = 0

**********Goal Reached**********

RETURN_DONE_P GOAL FLAG = 1
IN_RETURN_P GOAL FLAG = 0
WAITFOR_RECOVERY GOAL FLAG = 1
******************************Current X = 293.27
Current Y = 24.58
Current Depth = 19.54
Current Heading = 214.00
Current Bearing = -160.31
Current Range = 380.66

* RETURN SUCCESSFUL. *

*******Commanded Heading is: 214.00

Commanded Depth is: 0.00
Commanded Speed is: 0.00
Commanded X is: 0.00
Commanded Y is: 0.00
Commanded Mode is: Recover

"* MISSION EXECUTED SUCCESSFULLY. *

* AUV IS WAITING FOR RECOVERY... *

-''''''*''''''*'''*''''''**Current X = 286.27
Current Y = 14.60
Current Depth = 19.32
Current Heading = 208.00
Current Bearing = -154.88
Current Range = 392.22

122

2. MULTI-PHASE MISSION WITH ROUTE REPLANNING

CLIPS> (assert (start))
CLIPS> (run)
Creating OOD
Creating MISSION MODEL
Creating WORLD MODEL
Creating SENSORY RECEIVER
Creating OOD ROUTER
Creating NAVIGATOR
Creating ENGINEERING
Creating WEAPONS
Creating NAVIGATOR ROUTER
Creating GUIDANCE
Creating GPS CONTROL
Creating MISSION REPLANNER
Creating SONAR CONTROL
Creating GUIDANCE ROUTER
READY_VEHICLE_FOR_LAUNCH GOAL FLAG =

SELECTFIRST_WAYPOINT GOAL FLAG = I
WARNING: Reset Command may not be performed during the
execution of a rule
IN_TRANSIT_P GOAL FLAG = 1
POWER_GONEP GOAL FLAG = 0
COMPUTERSYSTEMPROBP GOAL FLAG = 0
PROPULSION_SYSTEM_PROBP GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDEDP GOAL FLAG = 0
REACH_WAYPOINT_P GOAL FLAG = 0
DIVINGSYSTEM_PROBLEMP GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOADPROBP GOAL FLAG = 0
No red-cap-system-prob branch successful!
UNKNOWN_OBSTACLE_P GOAL FLAG = 0
Comnnanded Heading is: 45.00
Commanded Depth is: 5.89
Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

123

SENDSETPOINTSAND-MODES GOAL FLAG =

TRANSIT_DONEP GOAL FLAG = 0
INSEARCH-P GOAL FLAG = 0
IN__TASKP GOAL FLAG = 0
INRETURNP GOAL FLAG = 0
INTRANSIT_P GOAL FLAG = 1
TRANSIT_DONEP GOAL FLAG = 0
POWERGONEP GOAL FLAG = 0
COMPUTERSYSTEMPROBP GOAL FLAG = 0
PROPULSIONSYSTEMPROBP GOAL FLAG = 0
STEERINGSYSTEMPROBP GOAL FLAG = 0
No crit-system-prob branch successful!
Current X = 8.81
Current Y = 0.00
Current Depth = -0.00
Current Heading = 89.00
Current Bearing = -21.92
Current Range = 641.87
REACHWAYPOINTP GOAL FLAG = 0
DIVING_SYSTEMPROBLEMP GOAL FLAG = 0
BUOYANCYSYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAKTEST_P C¢,A, FLAG = 0
PAYLOAD_PPOPP GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 43.97
Commanded Depth is: 6.00
Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

Current X = 124.75
Current Y = 81.84
Current Depth = 18.64
Current Heading = 38.00
Current Bearing = 32.51
Current Range = 504.12
REACH_WAYPOINT_P GOAL FLAG = 0
DIVINGSYSTEMPROBLEM_P GOAL FLAG = 0

124

BUOYANCYSYSTEMPROBP GOAL FLAG = 0

THRUSTERSYSTEMPROBP GOAL FLAG = 1

Commanded Heading is: 36.68
Commanded Depth is: 24.87

Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

SEND_SETPOINTS_AND_MODES GOAL FLAG =

LOITER GOAL FLAG = 1

Current X = 129.81
Currert Y = 88.16
Current Depth = 19.87

Current Heading = 38.00

Current Bearing = 33.01

Current Range = 497.26
Commanded Heading is: 218.71
Commanded Depth is: 24.87
Commanded Speed is: 250.00
Commanded X is: 124.75
Commanded Y is: 81.84
Commanded Mode is: Transit

Current X = 134.89

Current Y = 94.49
Current Depth = 21.11

Current Heading = 38.00

Current Bearing = 33.51

Current Range = 490.42
Commanded Heading is: 218.73
Commanded Depth is: 24.87
Commanded Speed is: 250.00
Commanded X is: 124.75
Commanded Y is: 81.84
Commanded Mode is: Transit

Current X = 140.03
Current Y = 100.77
Current Depth = 22.37

Current Heading = 36.00

Current Bearing = 36.02

Current Range = 483.57

125

Commanded Heading is: 218.92
Commanded Depth is: 24.87
Commanded Speed is: 250.00
Commanded X is: 124.75
Commanded Y is: 81.84
Commanded Mode is: Transit

Current X = 241.34
Current Y = 237.36
Current Depth = 48.08
Current Heading = 35.00
Current Bearing = 52.98
Current Range = 358.88
REACHWAYPOINTP GOAL FLAG 0
DIVINGSYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEMPROBP GOAL FLAG = 0
THRUSTER_SYSTEM_PROBP GOAL FLAG = 1
Commanded Heading is: 34.40
Commanded Depth is: 53.30
Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

SENDSETPOINTSANDMODES GOAL FLAG = 1
INSEARCHP GOAL FLAG = 0
INTASKP GOAL FLAG = 0
INRETURNP GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWERGONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
*****At waypoint, coming to new heading*****

Current X = 245.89
REACHWAYPOINT_P GOAL FLAG = 1
Current Y = 244.09
Current Depth = 48.99

126

Current Heading = 35.00
Current Bearing = 54.04
Current Range = 354.16
GET_NEXT_WAYPOINT GOAL FLAG =
DIVINGSYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG 0
THRUSTERSYSTEMPROBP GOAL FLAG 1
Commanded Heading is: 34.83
Commanded Depth is: 54.84
Commanded Speed is: 360.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Return

127

APPENDIX C. AUV SIMULATOR USER'S GUIDE

To run the AUV simulator, the following is required: a file with a set of CLIPS

rules, an executable file for CLIPS-Ada, an executable file for the AUV graphical

simulator, and four data files for inputs to the simulator. The CLIPS rule file serves as the

Strategic level. The executable file for CLIPS-Ada allows the CLIPS rules to call the

Tactical level procedures. The executable file for the graphical simulator acts as the

Execution level as well as the physical vehicle itself. The four data files for input are

"initial-state", "waypoints", "finalgoal", and "obstacles". These files must be initialized

first.

Data is entered into the "initialstate" file in the format illustrated in Figure 1.

0 .0 0.0 0.090.

X Y Depth Heading

Figure 13 "initial-state" Data File

Data is entered into the "waypoints" file in the format illustrated in Figure 2.

3 - -- Number of Waypoints
250.0 100.0 100.0 20.0 2
300.0 200.0 150.0 30.0 4
300.0 50.0 50.0 10.0 5

Mode key:
I = Transit
2 = Search
4 = Return

Speed X Y Depth Mode 5 = Recover

Figure 2 "waypoints" Data File

128

Data is entered into the "final-goal" file in the format shown in Figure 3.

50.0 50.0

X Y

Figure 3 "final-goal" Data File

Data is entered into the "obstacles" file in the format shown in Figure4.

1 .4 Number of Obstacles
50.0 17 .0 20.0

X Y Depth

Figure 4 "obstacles" Data File

Once the data files are set up, the simulator can be run from any Silicon Graphics

workstation in the Graphics laboratory. First, two window shells must be called up- the first

to run the Execution level/graphical simulator and the second to run the Strategic/Tactical

level. In the first window, the executable file "auv2"' is run. In the second window, an rlogin

to Virgo must be done and then either the "strtac 1" (multi-phase mission) or the "str_tac2"

(multi-phase mission with route replanning) executable file for CLIPS-Ada must be run. At

the prompt, the host name is entered as "irisn". Then the appropriate CLIPS rule set is

loaded by entering "(lead strlevx"). Finally, to start the simulation, a "start" fact must be

asserted ("(assert (start))") and the run command must be given ("(run)"). The simulation

can be stopped by killing the "auv2" process.

129

LIST OF REFERENCES

[Atki91] Atkinson, C., Object-Oriented Reuse, Concurrency and Distribution: An
Ada-Based Approach, ACM Press, New York, NY, 1991.

[Booc87] Booch, G., Software Engineering with Ada, 2d ed,Benjamnin/Cummings,
Menlo Park, CA, 1983.

[Booc9l1 Booch, G., Object-Oriented Design with Applications, Benjamin/Cummings,
Redwood City, CA, 1991.

[Byrn93] Byrnes, R. B. , The Rational Behavior Model: A Multi-Paradigm, Tri-Level
Software Architecture for the Control of Autonomous Vehicles, PhD
Dissertation, Naval Postgraduate School, Monterey, CA, March 1993

[DoD93I Introducing Ada 9X: Ada 9X Project Report, Office of the Under Secretary of
Defense for Acquisition, Washington, DC, 1993.

[Geha84] Gehani, N., Ada: Concurrent Programming, Prentice Hall, Inc., Englewood
Cliffs, NJ, 1984.

[Heal92] Healey, A. J., et al., "Research on Autonomous Underwater Vehicles at the
Naval Postgraduate School", Naval Research Reviews, Vol. 44, No. 1, pp.
16-30, August 1991.

[Hoar78] Hoare, C. A. R., Communicating Sequential Processes, Communications of
the ACM, Vol. 21, No. 8, pp. 666-677, August 1978.

[Howl88] Howle, W. T., "Ada in Real-Time Embedded Systems: Orbital Maneuvering
Vehicle (OMV)", Proceedings of TRI-Ada'88, pp. 363-370, Charleston, WV,
Oct 24-27, 1988.

[Kwak90] Kwak, S. H., Rule-Based Motion Coordination for the Adaptive Suspension
Vehicle on Ternary-Type Terrain, Technical Report NPSCS-91-006, Naval
Postgraduate School, Monterey, CA, December 1990.

[Kwak92] Kwak, S. H., McGhee, R. B., and Bihari, T. E., Rational Behavior Model: A
Tri-Level Multiple Paradigm Architecture for Robot Vehicle Control
Software, Technical Report NPSCS-92-003, Naval Postgraduate School,
Monterey, CA, March 1992

[Kwak93] Kwak, S. H., Rational Behavior Model: A Tri-Level Multiple Paradigm
Architecture, Technical Report NPSCS-93-006, Naval Postgraduate School,
Monterey, CA, September 1993.

130

[Lema89] Lemanski, W. J., and Hartrum, T. C., "An Assessment of the Development of
a Tracking System Using Concurrent Ada", Proceedings of the 1989
National Aerospace and Electronics Conference,pp. 466-473, Dayton, OH,
May 22-26, 1989.

[Niel88] Nielsen, K. W. and Shumate, K., Designing Large Real-Time Systems with
Ada, Multiscience Press, Inc., New York, 1988.

[Ong9O] Ong, S. M., A Mission Planning Expert System with Three-Dimensional Path
Optimization for the NPS Model 2 Autonomous Underwater Vehicle,
Master's Thesis, Naval Postgraduate School, June 1990.

[Scho93] Scholz, T., The State Transition Diagram with Path Priority and Its
Applications, Master's Thesis, Naval Postgraduate School, Monterey, CA,
September 1993.

[Scot88] Scott, Barbara, "Explorer Platform Ada Flight Software", Proceedings of
TRI-Ada'88, pp. 325-343, Charleston, WV, October 24-27 1988.

[Soft92] Classic-Ada User's Manual, Software Productivity Solutions, 1992.

[Stee92I Steer, B., Dunn, S., and Smith, S., Advancing and Assessing Autonomy in
Underwater Vehicle Technology Through Inter-Institutional Competitions
and/or Cooperative Demonstrations, Department of Ocean Engineering,
Florida Atlantic University, Boca Raton, FL, May 1992.

[Stev93] Stevens, C. D., A Software Architecture for a Small Autonomous Underwater
Vehicle Navigation System (SANS), Master's Thesis, Naval Postgraduate
School, Monterey, CA, June 1993.

[Toml89] Tomlinson, C., and Scheevel, M., "Concurrent Object-Oriented
Programming Languages", Object-Oriented Concepts, Databases, and
Applications, W. Kim and F. H. Lochovsky, eds., pp. 79-124, ACM Press/
Addison-Wesley, New York, 1989.

131

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Director, Training and Education
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

Ted Lewis, Professor and Chairman
Department of Computer Science
Code CSLt
Naval Postgraduate School
Monterey, CA 93943-5118

Computer Technology Programs
Code 37
Naval Postgraduate School
Monterey, CA 93943-5119

Dr. S. H. Kwak, Code CS/Kw 5
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

Dr. R. B. McGhee, Code CS/Mz
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

LCDR M. K. Shields, Code EC/SL
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

132

CAPT F. P. B. Thornton, Jr.

Director, MCOTEA
3035 Barnett Avenue
Quantico, VA 22134-5014

133

